ЕЕХДУНАРОДННЙ ГЕОФИЗДЧЕСКИЙ ГОД I957-I958-I959

ИНСТИТУТ ЗЕМНОГО МАГНЕТИЗЕА, НОНОСФЕРН И. РАСПРОСТРАНЕНИЯ РАДИОВОЛН АН СССР

МАТЕРИАЛЫ ИОНОСФЕРННХ ИССЛЕДОВАНИИ

$$
\begin{aligned}
& \text { Алма-Aта } \\
& \text { Alma-Ata }
\end{aligned}
$$

1958

> OKmadob

Дих	$\begin{array}{r} 00 \\ 6.6 \\ \hline \end{array}$	6.7	6.2	$\begin{aligned} & 03 \\ & 6.6 \end{aligned}$	$\begin{array}{r} 04 \\ 6.7 \\ \hline \end{array}$	$\begin{gathered} 05 \\ 6.7 \end{gathered}$		$U 11.7 . S$	${ }^{08} 13.8 \mathrm{C}$	$\begin{gathered} 09 \\ 14.6 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 14.5 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 14.4 \\ \hline \end{gathered}$	J14.0c	$\$ 12.6 c$	$D 126 c$	D12.6C	12.5		U9.9C	$\|09.65\|$	$\begin{aligned} & 20 \\ & 9.1 \end{aligned}$	21 8.5	$\begin{array}{r} 22 \\ 7,3 \\ \hline \end{array}$	$\begin{array}{r} 23 \\ 6.3 \\ \hline \end{array}$		
2	\bar{C}		c	C	c	c	c	c	C	c	c	c	c	c	c	c	c	c	c	c	c	c		- ${ }^{2}$		
3		6.5	6.1	5.8	5.6	5.5	7.5	U10.75	12.5	713.8C	713.2C	\$12.5C	713.9C	9125c	\$12.6C	v/2.7c	12.6	12.5	11.7	$\nu 10.40$	22	7.8	7.6	6.6		
4		C	6.6	6.7	6.7	6.4	9	J11.35	12.6	V12.8C	J143C	D/2.6c	2/2.5C	\$12.6C	12.8	8/26c	UR2.S	12.0	10.3	9.1	8.2	7.7	56.8.	6.7		
5		6.2	6.5	6.5	6.3	6.1	7.2	4.2	12.5	d12.5c.	D125cl	y14.0c	\$/26c	012.5 c	012.6	D12.5c	012.58	\$12.5c	120	10.1	l98e	76	6.9	6.5		
6		5.8	6.1	6.1	6.0 F	6.3	7.8	4.8	121	Y13.5C	8 C	C	114.0 C	127C	012.6C	D127c	12.8	12.5	U123.	\$100S	88	80	8.2	7.3		
7	6.1	6.4	c	C	C	6.2	8.4	11.7	D 12.45	D12.8S	Il4,0S	913.8.s	51395 2	2125C	D/2.5C	12,8	12.5	12.4	11.8	v10.8 S	9.2	8.0	7.0	6. 0		
8	6.	6.7	6.7	6.7	5.7	5.6	7.4	I/0.2C	212.7C	7138C	214.16	$114.3 C$	714.96	D/2.8S	D12.75	912.7S	c	c			C					
9	- 6	5.9	5.8	5.7	5.4	5.4	7.4	U11.7.s	012.6 C	714.3	y14.3	142 LC	214.16	01	012.6	U128c	U12.6C	121	10.8	2.8.s	9.0	7.7	6.5	5.8		
10	17	5.5	28	5.8	5.8	58	80	119	D/2	012.6C	D,2.7c	g127c	8127cl	vir	12.5	12.9	2127c	11.8	1710.55	C	C	c	C	6.1		
11	5.8	6.0	5.9	5.7	- 2.8	6.0	8.2	11.3	\$12.5	S	714.35	214.15	714.15	D12.	D12.6C	D 12.6	c	127	11.0	09.8.5	9.0	7.7	6.8	6.0		
12	6.2	6.2	6.3	6.3	6.0	6.0	J7.8S	U11.8.s	D/2bcu	01485	vir	215.4 C	215.3C	1150	D126cD	D<2sc	D2, 5 c	UR.9C	vio.9c	99	9.0	8.4	8.0	7.6		
13			5.9	5.7	5.5	5.6	6.0	0935	12.0	012.5 c	$143 C$	143	W14.4C	14.2	V14,4C	314, 12	U13.7C	Du.0C	D120C	DiRos	09.0S	8.1	181.5	77.95		
14	c	6.7	68	7.2	6.7	6.4	8.5	12.5	13.8	15.0	15.0	14.5	14.4	212.5c) 12	212.6 S	U127S	120	10.5	9.0	9.0	8.3	7	± 0		
15	6.7	6.7	6.7	6.6	6.3	6.0	7. 7	115	13.8	15.0	15.8	15.9	15.5	114.7 C	714.2C	14.6	1026.6s	13.1	11.7	U10.8.s	92	90	7.9	25		
16	17.78	7.9	78.2S	58.2S	U8.75	U8.9S	VG.3S	U11.8S	U15.0S	U15,0	15.3S	15.0	Y14.5	$14.3 C$	Y 13.60	D13.0C	13.0s	V12-5C	210.5	U10.0C	9.2	87	8.2	7.1		
17	6.7	6.3	6.3	6.1	6.4	6.1	7.7			I14.1C	7142C	$\pm 14.2 C$	7142 C	J14.1c	O1R.7C	D12.6C	D12.5c	vi2.ss	210.5s	\$9,0 S	9.3	7.9	7.9	7.5		
18	6.4	6.4	6.8	6.4	763 c	6.4	7.3	C		J14.8C	1<5.4s	U15.8.s	vis 3,5	012.zC	dic.zc	D12.7C	713.5c	U2.7C	U11.3C	D10.1C	9.9	3.8	8.0	7.2		
19	7.5	26.8.5	6.7	6.1	60	6.0	7.8	012.55	U15.0.5	15.0	15.0	15.1	15.3	15.0	U14.	214.35	214.0.5	3/2.45	4แ8s	U99C	U95C	18.5 5	2.6.	V6.6C		
20	$1067 c$	U7.2C	J7.0c	6.7	6.3	5.9	76.95	locood	313.75	7143,	V/4. 5 C	171.5S	\$150s	150.s	015.0S	V145C	J140s	0/2.5s	s	U114s	09.25	1835s	78	İ7 ${ }^{\text {c }}$		
21	J7.0c	-6.	-6.6	6.2	5.9	6.0	7.8	11.8	14.7	-15.3	U15.4C	U15.5S	15.4	14.9	14.4	y142S	0/2.5S	2,2.6S	11.85	V10.5s	9.4	8.8	7.8	7.1		
22	c		-c							c	-	c	c	c			c	C	-	c	c	c	c	c		
23			7.0	6.8	6.8	6.5	8.5	2113.	c	0,2.65	D12.85	012.5.5	012.6s	012.65	212.65	c	12.	U120S	93	2.7	6.8	6.6	6.6	6.5		
24			- 6			C	c		-c	C	12.6.5.	D/2.5s	D12.6S	D12,6,5	D127s	012.6, 5	D12.65	11.6	49.3S	8.6	6.8	6.9	6.2	5.8		
25	106.25	6.0	142 C	U5.2C	4.3	4.9	1745	U16.S	12.78	017.6C	bi2.sc	14.7	1146.50	7142c	012.5 c 1	12126C	12,	U/2/s	107s	U92S	2855	7.9	\$7.4S	6.4		
26	76.15	5.9	-5.9	U6.1s	16.0.s	U5.45	6.3	D9.2C	D/2.6c174	1414.5c	1215.15	D125c		l012.6C	ck	V14.1c	D3.0S	D12.8C	1129	9.5	7.9	U6.7S	6.0	58		
27		6.5		c		C			c	c			c		c	c	1335c	13.2	12.0	10.2	8.7	7.5	6.3	5.7		
28	5.2	U505	v5.05	V4.1E	24.3c	4.5	55.6C	8.5	12.3	12.8	$13.6 C$	16.0	16.4	715.4 C	15.06	0126s	\$13.8C	12.8	11.8	9.5	81	7.0	6.2	5.6		
2.9	5.7	5.2	6.0	6.2	5.3	4.2	5.8	11.8	15.2	215.3.	115.76	15.5	11595	1150C	Y14.8C	414.0 C	D2.66	12.8	11.0	9.2	7.5	6.8	5.6	5.5		
30	5.5	5.7	4.7	4.8	4.9	4.9	6.5	I 10.86	714.2 C	14.9	15.3	16.0	15.6	15.0	214. 5 c	514.3.5	b12,8,	13.2	11.6	9.1	77.35	6.8	6.0	5.9		
31	5.7	5.8	6.4	6.3	5.3	75.4N	6.3	711.75	U14.4C	15.5	d15.0.5	15.2	15.5	15:1	14.4	J14.3, 5	713.8.5	812.45	d5.0S	9.4	I 8.1 C	7.1	6.3	5.1		
	5.8	15.8 6.7	5.96	5.86	5.56	$\frac{5.4}{6.3}$	6.98 .0	10.711 .8	12.5 14.6	13.915 .0	$44^{2} 153$	14.8 15.5	\|14.15.4	12.5 5.0	12.614 .4	12.143	2. 148	2128		9.2 10.2	8182	7 7	6.3 3	5.8.2		
Мелййп	6.2	-6.3	6.3	6.2	6.0	6.0	又 2	117	13.8	14.6	11455	14.8	14.8	212.8S	12.78	U141C	41305	125	L123	v2.8s	9.0	7.95	7.0	6.5		
v	24	25	26	26	26	27	27	23	16	21	23	20	22	28	27	14	15	26	25	26	27	27	27	28		
	0.9	0.9	0.8	0.8	0.8	0.9	1.1	1.1	2.1	1.1	1.1	1.3	1.3	2.4	1.8	1.5	1.1	0.7	1.3	1.0	1.1	1.4	1.6	1.4		

МЕЖДУНАРОДНЫЙ ГЕОФИЗИЧЕСКИЙ ГОД
 Anma-Aтa

ИОНосФерНІІе ДАНННе
долтота_ $76^{\circ} 55^{\prime} \mathrm{E}$ пирота $45^{\circ} 15^{\circ} \mathrm{N}$

Миниотерство связи Hè cocrasena COnoboEboLi
нем нодсчитана $2 y$ сановой

Див 1	00	01	02	03	04	05	${ }^{0} 6$	07	${ }_{0} 8$	${ }^{09}$	10	11	${ }^{12}$	${ }^{13}$	14	15	16	17	18	19	20	21	22	${ }^{23}$		
2											c	c	c	c	c	c										
3												1	4.9	\underline{L}	L	L										
4											L	L		L	\underline{L}											
5											L	L	4.7	L	1											
6										1	L	C	L	L	L	L										
7												1	L	L	L	\underline{L}										
8											L		L	L	L	L										
9											L	L.	\underline{L}	\underline{L}	L											
10													L		L	L										
11												L	L	L												
12														L	L											
13														L												
14														L	L											
15														L	1											
16																										
17												L			L											
18													L	2	L	L										
19													L	L												
20																										
21														L												
22										C	c	C	c	C	c	C										
23										\underline{L}	L	1	\underline{L}	\underline{L}												
24														L	L											
25												1		L	1											
$2{ }^{3}$																						-				
27										c	c	L	\mathcal{C}	\mathcal{C}	\mathcal{L}	\underline{L}										
28																										
29														L												
30														\underline{L}												
31																										
Медкана													4.8													
уитено													2													

донюта $76^{\circ} 55^{\prime} \mathrm{E}$ пирога $43^{\circ} / 5^{\prime} \mathrm{N}$

ИОНОСФЕРНЫЕ ДАННЫЕ
полсное время $75^{\circ} \mathrm{E}$

Iien составлена Kyсmoboü
Кем подсяттана Cyсаковой

Деи 1	00	01	02	03	04	05	$\begin{array}{c\|} 06 \\ \text { E2.50c } \end{array}$	${ }^{07}$	08 -9	$\begin{array}{\|c\|c} 09 \\ 3.50 \\ \hline \end{array}$	$\begin{array}{c\|} 10 \\ 3.60 \\ \hline \end{array}$	$\left\|\begin{array}{c} 11 \\ v 3.80 c \end{array}\right\|$	$\left\|\right\| \underline{v}$	$\left\lvert\, \begin{gathered} 13 \\ \hline 3.60 c \\ \hline \end{gathered}\right.$	14	${ }^{15}$	${ }^{16}$	$\begin{array}{ll\|} 17 \\ & \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} 18 \\ 51.208 \end{gathered}\right.$	19	20	${ }^{21}$	22	23		
2											c	c	c													
3							E 2.000	2.80	3.10	3.50	3.70	4.00	U3.30 6	3.60	3.50	3.10	2.80	E 2.30 c	1.70							
4							E2.008 U	U 2.80	3.10	3.50	$\underline{3.708}$	3.80	W3.30 A	3.60	I 3.10 A I	I2.85	I2709	2.10	8							
5							1.80	2.50	2.90	U 3.30 R	U3,508	3.80	3.80	A	a	3.10	2.60	2.10	ε							
6	E1.508	E1.40B	E1.60B	E1.60B	E1.70 B	E1.10 B ${ }^{\text {E }}$	E2.00B	E 2.00 C	3.10	3.50	3.70 I	$\underline{13.755}$	3.80 I	$\underline{\underline{3} .70 \mathrm{~A}}$				- ${ }^{\text {a }}$	- ${ }^{\text {a }}$							
7		E1.20B	C		$\therefore \quad c$	E	E2.10 C	2.60	3.00	3.40	3.50	3.60	U3.60 A	$\underline{3.50 R}$	3.40	3.10	2.80	E2.00s	E1.30.							
8			E1.50 B	E1.30B	E1.50B	E1.30 B	1.80 I	$\underline{2} 2100$	3.00	3.30	13.00 A	-3.70	3.80	3.50	3.40	3.00						c	c	c		
9					E1.60B	E1.60B	E2.00 CV	U 2.50 S	3.00	3.30	3.50	3.80	3.60	3.60	3.v0	3.20	2.80	1.90	F1108							
10			E1.10B	E1.50B		E1.10 B	E2.00cU	U2.50 C	3.10	a	A		A	3.60	3.50	3.20	2.80		1							
11			E1.50B	E	E1.10 B	E 1.30 B	E1.90C	2.50	3.10	3.30	3.40 I	$\underline{13.508}$	3.60	3.50	v3.voc	3.10	72.30 6	1.90	F1.50C							
12							E 2.00 B ¢	E2.80C	3.10	3.50	3.60	3.60	3.70	3.60	3.50	3.10		E 2.00 C								
13	C		E1.60C	C E	E1.50C	E1.50C	E1.50 B	2.10	2.90	3.10	3.30	3.50	$\underline{3.559}$	3.60	3.50	3.40	$\underline{+108}$	2.70	E 2.10 C	E1.50s.						
14						E1.308	2.00	2.80	3.00	3.30	3.50	3.70	3.70	3.70	3.50			E 2.10 B								
15		$\overline{E 1.30 B}$	E1.10B	E1.50B	E 1.10 B	E	E1.808	2.50	3.00 V	V 3.40 AlI	13.60 al	13.70 A	3.70	3.60	3.40	3.10	2.90									
16		A			A	A	2.00	2.70	3.10	3.20	3.60	3.70	1370 A	[3.60 A	3.50	3.10	I 2.70 A	- \quad a								
17	:					E1.60B	1.80 I	I2.50 c	I3.20C	3.40	3.60	A	A	A	3.70	3.20	2.50	1.80								
18						E1.40B	E1.80 B	c	- $\quad \mathrm{C}$	3.90	3.50 I	I 3.70 A	3.80	3.70	3.60	3.10	2.80	2.00								
19							E1.70 B	2.50	3.00 I	I 3.40 A	I3.60星I	I380 A	3.90	3.80	13500	3.10	2.60	1.90.	c							
29					E2.00C	E 2.00C	E 2.00 C	Cl	1 3.10			- A	A	A	3.60	3.10	A	A								
21						E1.30B	F1.70 8	2.50	3.00	A	A	A	3.80	3.90	3.70	3.10	2.70	01.80.s	$\underline{1 / 608}$							
22						C	c	C	c	c c.	c		c	c	c	c		-								
23					E1.508	E1.50 B	E1.608	12.30 C	- c	3.10	3.30	3.50	23.60 ${ }^{2}$	3.60	3.40	33.00C	2.40	A	A							
24					C		c	- c	c		U 3.50 C	-CI	I 3.50 A	3.40	3.20	3.10	2.30	F1.9Q 6	A	E1.60B						
25		E1.70 B	E1.70 B	E1.60B	E1.708	E 1.60C	E1.70 cu	2.15A	A	- ${ }^{\text {a }}$	al	U 3.40 R	$1{ }^{1} 3.50 \mathrm{cI}$	I 3.45 a	3.20	3.00	2.40				E 1.508					
26			E1.40 B		E1.208	E1.50B	E1.508	2.30 R I	I2.90 A	3.30	3.40 I	[3.45 A	3.50	3.50	3.20	2.95	P2.30R	1.70	E1.50 ${ }^{\text {er }}$	E1.60 B	E1.508					
27	c		$C \quad C$				c	C C	- c		c		c				U2.40S		E1,30 B	E1.30 B						
28							A	c	A	2.90	A	A	A	A	A	3.00	2.30	1.70	E1.30 B							
29					E1.60B	E1.60 B	E1.60C	-2.30	2.90	3.10	V 3.20 A		,	A	3,50	3.00	U2.40R	E1.50 B	Etivob	E						
30							E1.40 B	$\underline{2} 2.30 \mathrm{C}$	2.90	3.00	A		A	3.v0	3.20	2.90		A	- A							
31							E1.50 B	B 2.20	2.90	3.00	A								El.20S							
		MO	$\underline{125}$ EL60	E $=1.55$	17.10 11.65		5LTO EO2	2.30	2.90 3.10	3.10 3.40	${ }^{3.10} 3.60$	${ }^{3.50} 38$	${ }^{3.60} 3.80$	${ }^{3.50}$	-3.50 ${ }^{3.50}$	${ }^{3.00} 3.10$	2.70	1205	720	11.30	\bigcirc					
Медхава	E1.50B	E 1236	E1.508	EL, YOB	E1.508	E1.308	E1.808	2.50	3.00	3.30	3,50	3.70	3.70	3.60	3.50	3.10	2.70	1.90	E1.30 ${ }^{5}$	EL50B						
Учтено	2	4	8	8	13	17	26	22	22	23	21	20	$2!$	22	23	2.4	21	15	13	5						
:								0.20	0.20	0.30	0.20	0.30	0.20	0.10	0.10	0.10	0.40	0.30	0.35	0.30						

Станця -AnMa-Ama

Доягота $76^{\circ} 55^{\prime} \mathrm{F}$ широта $43^{\circ} / 5^{\prime} \mathrm{N}$

Министерство CBози
ИОНОСФЕРНЫЕ ДАНННЕ
поясное время $75^{\circ} \mathrm{E}$

Кем составлена Bорогушиной
Кем подспитана 乌усяково́

Дев 1	[00	01 	${ }^{02}$	03 $1.6 x$	${ }^{04}$	E2.5 05	${ }^{06}$	$\begin{array}{r}07 \\ 3.0 \\ \hline\end{array}$	08 3.8	09 J 4. $5 \times$	10 3.9	${ }_{11}$ 3.9	12 3.9	13 3.9	14 3.8	15 $\times 9.0 \times$	16	17 $53.1 x$	18 -	19 ¢	20 $73.0 x$	21 $27 \times$	22	23 $33.1 \times$			
2	c	c	c		C	c	c		C							c	c		C	c	c			C			
3	73.3x	E1.68	1.8	E1.5B	E1.4 B	E2.0B	G	G	3.4	4.0	4.1	\underline{G}	4.2	\underline{G}	G	G	G	G	4.0	4.0	E2.1c	33.5 \times	E1.6B	Erec			
$4{ }^{\text {P }}$	C	C.	E1.6B	E1.6 B	E 2.0 C	E1.6B	G	\underline{y}	\underline{y}	4.0	4.1	4.2	4.4	4.3	J $5.4 \times$	15.8x	2.7	74.3x	72.3x	F 1.9 C	E1.6 ${ }^{\text {b }}$	y	E2.0c	E1.8B			
5	J $2.4 \times$	J1.9x	y	E1.68	,	71.7 $\times 1$	G	$G \quad G$	G	6	y)	4	J6.5x	35.3x	4.1	3.4	74.3x	G	0	E1.3B	E1,5B	E 1.6 B	E1.58	E1.78			
6	G	G	G		G	G	G	G	4.1	3.6	4.0		J4.3x	3.9	3.9	34.3x	J5.8x	J3.1x	52.2x	E1.6B	E1.5B	72.5x	E1.2B	E			
7	E	G	C	C	C	G	\underline{G}	- G	G	3.5	3.7	3.8	3.8	G	\underline{G}	37.0x	\underline{G}	G		E1.5 B	E1.6 B	E1.6BE	E1.2B	E 1.58			
8	E1.5B	F1.6B	G	G	G		G	-	74.3x	4.0	34.3x	c	6	\underline{G}	-G	Q		c	c	C	C	C	C	C			
9	C	E1.5B	E1.5B	E 2.0 C	G	G	G	G	G	G	y		G	6.	J $6.8 \times$	3 4.3x	3.4	2.2 !	G	E1.38		E $1.6 c$	E1.6 B	E1.4 B			
10	E 1.1 B	$E 1.2 \mathrm{~B}$	G	G	G	G	G	G	G	4	y	7 $4.3 \times$	4.4	G	G	. 5	73.3x	73.3x\|	72.5x	c	C			E1.28			
11	E1.6B	E1.6B	G	G	G	G	G	G	G	4.0	5.0	4.4	G	G	G	G	4.0	G	G	E1.48	E 1.58	El, 2 B E	$E 1.58$	E 1.58			
12	E1.5 C	E1.5C	E2.0C	E	E	E1.6B	G	G	34.3x	4.0	4.0	4.0	4.1	G	G	G	34.3x	G	12.4x	J2.3x	E1.5B	E1.38	El.6B	E 1.58			
13	c	C	G	G	G	G	6	G	G	34.3 ${ }^{4.0}$	4.1	3 4.3x	34.3x	G	\underline{y}	y	4.2	2.5	G	G	E1.2S	E1.2BE	El. 2 S	E 1.6 S			
14	c	E1.28	E1.2B	E1.3 B	G	G	G	G	G	4.0	4.4	8.2	G	G	4.0	37.3x	4.0	G	E1.3B	E 1.5 B	72.5x	$E 1.3 \mathrm{~B} E$	E1.3 B	E 1.58			
15	E1.5 B	G	G	G	G	G	G	G	G	4.0	4.0	3.8	G	G	G	G	G	7 $4.3 \times$	J3.5x	$33.5 \times$	13.8x	y		E 1.6 B			
16	C	52.5x	72.3x	72.3x	32.2X	12.5x	G	G	3.8	4.0	4.0	4.0	4.0	4.0	G	3.6	J3.6x	$33.3 \times$	72.6 x	J2.3x	92.8x	E1.6C	E1.6C	E1.6 C			
17	E1.1B	E1.2B	E1.6B	E 1.6 B	E1.6B	E1.6B	G	c	c	4.0	4.2	4.0	4.0	4.2	3.0	54.6x	3.2	G	J 3.3x	94.3x	E1.2B	E1.6B	J2.6x	J2.5x			
18	$72.5 \times$	El.6B	E1.6B	E1.6B	- C	G	G	C	C	5.0	4.5	4.0	G	3.5	G	G	G	G	E1.3 B	E1.58	J2.5x	E1.6B	E1.5B	E 1.68			
19	E1.6B	El.6 B	F 1.68	E1.68	E2.0B	Eli B	G	$G-G$	15.8x	3.6	3.7	4.2	G	G	34.7x	G	$23.5 \times$	G	3.2	72.8x	93.2x	E 1.6 C	y	E 2.0 C			
20	E2.0C	E2.0C	E2.0C	E2.0C	G	G	G	- G	G	3.7	4.1	4.3	34.3x	$34.0 \times$	4.1	$34.3 \times$	93.8x	2.2	J5.3x	J2.5x	73.3x\|	E1,5 B	E1.6B	c			
21	E1.5 B	E1.5B	E 1.48	J $3.5 \times$	El.5B	\underline{y}	G	G G	D 8.5 C	4.1	74.3x	5.0	D4.9C	G	G	G	G	G	$\underline{4}$	2.3	2.3	E1.6B	E1.5B	E1.58			
22		C	C		C	G	c	$C-\quad C$	C		c	c	C	c	c	c	c	5	c	c		C	c	c			
23	c		J2.9x	E1.5 B	\underline{y}	6	G	2.5	c	J 4.4x	3 4.3x	J4.5x	5.1	D 6.2c	G	c	2.5	33.6 x	32.4x	72.4x	E1.6 B	J2.5x	J 3.3x	73.3x			
24	12.6 x	c	C		c	c	C	C $\quad \mathrm{C}$	c	C		D 3.0 ¢	4.1	3.4		G	G	O	1.8	G	J6.1x	J $6.1 \times$	J3.0x	G			
25	E	G	G	G	G	G	G	93.3x	78.1x	J 5.9x	$73.5 \times$	3.6	7 $3.6 \times$	4.3	3.8	4	J3.7x	3 $3.5 \times$	$33.5 \times$	J2.6x	G	y	y	E1.6B			
$21)$	E1.4 B	E1.18	G	G	Q	G	G	G	3.4	3.7	J3.8x	$75.5 \times$	3.0	G	G	G	G	G	G	- G	G	E 1.7 B	J $3.3 \times$	$72.9 \times$			
27	y	J2.6x	c			c	C	C	c				c	c	c	C	7 4.3x	36.0x	c	G	E1.48	$31.8 \times$	J 3.3 x J	J $3.0 \times$			
28	J $3.0 \times$	71.6X	J2.5x	E 2.0 C	C	51.6x	\underline{y}	3.2	3.3	3.4	3 $5.8 \times$	J5.8x	99.0x	76.3x	75.9x	y $3.3 \times$	G		G	E1.6C	E1.5C	93.0x	$33.8 \times \mathrm{J}$	J $4.1 x$			
29	J2.8x	E1.58	E1.6B	E1.68	G	G		G \quad G	3.4	3.7	3 4.3x	J5.7x	y7.1x	75.5x	G	G		G	\underline{G}	$33.3 \times$	54.3X	E 1.58	E\\|B J	J2.5x			
30	51.6x	J1.9x	E1.68	E1.38	E 1.5 B	G		G-G	3.4	J $4.7 \times$	J 5.3 x	J4.5x	54.3x		J $4.3 \times$	3.2	J 3.3 x	J $3.5 \times$	73.3X	E1.5 B	74.3x	E2.0C	E2.0S	E2.0S			
31	F 1.68	F/.4B	E 2.0 C	3.4	E 1.9 B	E $1.7 \mathrm{~B}^{\prime \prime}$		G G	G	3.4	10.0×1	y $4.3 \times$	174.3x	\|94.6x		77.8x	$76.5 \times$	72.5x	$72.3 \times$		E 1.8 B		77.0×1	E1.7B E	E 1.58		
	E1.4 25	E1.2 1.8	G E2.0	${ }_{6} 1.6$	G 20	G1.6	${ }_{G}^{G}$	$G G$	Q 4.2	$\frac{3.6}{4.3}$	4.08 .8	3.94	3.04 .4	G 4.2	${ }^{6} 4$	G 58	64.0	G ${ }_{3,3}$	G 3	E1.4 2.6	E 1.5		,	F1.5 2.5			
Медвана	E1.6B	E1.5	E1.6B	E16B	G	G	G	G	3.4	4.0	4.2	4.2	4.1	3.4	3.0	$\because 8.4$	3.3:	2.2	2.4	E1.8B	E1.6B	E1.68	E1.68	E1.68			
Учтено	23	2.5	26	26	24	28	27	24	2.4	27	28	27	28	28	28	27	28	28	27	27	26	27	27	27			
	D1. 2	D0. 8								0.5	0.8	0.6	1.4							D1.20	D 1.5	D 0.4	D 0.8	D 1.0			

МЕЖДУНАРОДНЫЙ ГЕОФИЗИЧЕСКИЙ ГОД

 craman Aama-Ama
долгота $76^{\circ} 55^{\prime} E$
долон $765^{\circ} \mathrm{L}$

Muнuстерстbo C вязи
Кем составлена Bорогушиной
ИоносФерНие данные
полснее времл $75^{\circ} \mathrm{E}$
Кеи подсчитана Гусакобой

ИОНосФEPHISE ДAHHLNE
довгота $76^{\circ} 55^{\circ} \mathrm{E}$ иирота $43^{\circ} / 5^{\prime} \mathrm{N}$
толсное время, $75^{\circ} \mathrm{E}$
нем подсчитана Eronaebqü

$\begin{gathered} \text { Дй } \\ 1 \\ \hline \end{gathered}$	E200	1.3	02 1.3	03 1.3	04 1.3	E2.5c	F 2.56	07 E2. 4.	${ }^{08}$	E2.5C ${ }^{09}$	E2.5c	[$\begin{gathered}11 \\ \text { E2.5C }\end{gathered}$	[2.4	¢ 23.6 C	E2.4C ${ }^{14}$	E2.4c15	$\begin{array}{r} 16 \\ 1.5 \\ \hline \end{array}$	$\begin{array}{r} 17 \\ 2.3 \end{array}$	18 1.2		20 1.2	21 1.2		23 2		
2	c	c	c	c		c		咼																c		
3	1.7	1.6	1.4	1.5	1.4	1.5	E 2.0 C	1.5	1.9	2.0	1.2	E 3.0 C	2.0	2.0	2.0	2.0	1.6	E2.3C	1.1	1.6	E. $2.1 C$	$E 2.00$	1.6	E2.0		
4	C	c	1.6	1.6	E2.00	1.6	2.0	E1.8C	1.5	2.0	2.0	E2.7C	2.1	2.0	2.0	1.6	1.5	1.6	1.1	E1.9C	1.6	1.6	E2.06	1.8		
5	1.1	1.2	1.0	1.6	1.0	1.0	1.6	1.5	1.9	2.0	1.9	2.0	2.0	1.9	1.5	1.2	1.4	1.4	1.0	1.3	1.5	1.6	1.5	1.7		
6	1.5	1.4	1.6	1.6	1.7	1.1	2.0	E2.0C	1.5	2.0	2.0		2.0	2.0	2.0	2.0	2.0	1.5	1.1	1.6	1.5	1.6	1.2	1.0		
7	1.0	1.2	c		\bigcirc	1.0	E2.LC	2.0	1.6	2.0	2.0	2.1	2.0	2.0	2.0	2.0	1.7	E2.0.5	E1.35	5	1.6	1.6	1.2	1.5		
8	1.5	1.6	1.5	1.3	1.5	1.3	1.3		1.6	2.0	2.0	2.0	2.0	2.0	1.5	1.5	c	c						c		
9	c	1.53	1.5	E2.0C	1.6	1.6	E 2.0 C	1.7	1.7	1.7	1.7	2.0	2.0	1.6	1.5	1.7	1.5	1.5	1.1	1.3	.	E1.60	1.5	1.4		
10	1.1	1.2	1.1	1.5	1.0	1.1	E 2.0 C	2.0	2.0	2.0	2.0	1.8	1.8	2.0	1.5	1.1	1.5	1.1	1.0					1.2		
11	1.6	1.6	1.5	1.0	1.1	1.3	E1.9C	1.5	1.3	2.0	1.3	2.0	2.0	2.0	2.0	1.7	1.5	1.5	E1.5C	1.4	-15	1.2	1.5	1.5		
12	E1.5C	E1.5C	E2.0C	1.0	1.0	1.6	2.0	E 2.8 C	1.5	1.7	2.0	2.0	2.0	2.0	2.0	1.7	1.3	E 2.0 C	1.3	1.3	1.5	1.3	1.6	1.5		
13	c	c	El.6C	1.0	E1.5C	El.5C	15	E1.6c	1.7	2.0	E2.1C	2.1	F2.5C	E2.3C	2.0	2.0	2.0	E1.6C	E2.1C	E1.5S	E1.2S	1.2	El.2S	E1.6S		
14	c	1.2	1.2	1.3	1.0	-1.3	1.7	2.0	1.5	2.0	2.0	2.0	2.0	2.	2.0	1.8	1.5	2.1	1.3	1.5	1.6	1.3	1.5	1.5		
15	1.5	1.3	1.1	1,5	1.1	1.0	1.8	1.6	2.0	2.0	2.0	E2.8C	E2.6C	2.2	2.0	1.4	1.5	1.2	1.2	1.1	1.4	1.6	1.6	1.6		
16	c	1.0	1.0	1.0	1.0	1.0	1.3	1.8	2.0	1.9	2.0	2.0	2.0	2.0	2.0	. 8	1.6	E1.5C	1.0	1.1	1.2	El.6c	E1.6C	E1.6C		
17	1.1	1.2	1.6	1.6	1.6	1.6	1.3	\bigcirc		1.6	2.0	1.9	1.8	1.7	1.5	1.5	1.4	1.0	1.4	1.2	1.2	1.6	1.5	1.7		
18	1.7	1.6	1.6	1.6	: C	1.4	1.8	C	C	2.0	1.5	2.0	2.0	1.4	1.6	1.6	1.0	1.0	1.3	1.5	1.5	1.6	1.5	1.6		
19	1.6	1.6	1.6	1.6	E2.00	1.7	1.7	E2.0S	1.5	2.0	2.0	2.0	1.7	2.0	2.0	2.	1.5	E1.5c	E1.7C	E1.5C	E1.6.	E1.6C	E15C	E2.0C		
20	E2.0C	E2.0	E2.0C	E2.0C	E 2.00	E2.0c	E2.0C	E20C	1.5	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.7	1.5	El.5s	1.5	1.5	1.5	1.6	C ${ }^{\text {c }}$		
21	1.5	1.5	1.4.	1.5	1.5	1.3	1.7	1.7	1.6	1:8	2.0	2.0	E2.60	E2.9C	E 2.1 C	1.8	1.6	1.5	1.6	1.5	1.3	1.6	1.5	1.5		
22			C	c	\ldots		\cdots	c		- C		C				c							c	c		
23			$1 /$	1.5	1.5	1.5	1.6	1.5		1.4	2.0	2.5	E2.7C	2.0	2.0	c	1.4	1.0	1.0	1.5	1.6	1.4	1.3	1.3		
24	1.5	C								C	2.0	2.0	2.5	2.0	2.0	1.8	1.5	1.4	1.3	1.6	1.0	1.3	1.3	1.4		
25	1.0	1.7	1.7	1.6	1.7	E1.6C	E1.7C	1.7	1.7	1.8	1.7	F1.85	1.9	2.0	1.8	2.0	1.8	1.3	1.3	1.3	1.5	1.4	1.6	1.6		
26	1.4	1.1	1.4	1.0	1.2	1.5	1.5	1.8	2.0	2.1	2.0	2.0	2.0	E2.0C	2.0	1.7	1.6	1.6	1.5	1.6	1.5	1.7	2.0	1.8		
27	El.7C	E1.4C			c	C		\cdots	- C			c			c	\therefore	1.5	1.4	1.3	1.3	1.4	1.0	1.0	E $1.5 C$		
28	E1.4C	E1.6C	1.0	E 2.00	,	1.0	1.0	E17C	2.0	2.0	2.0	2.0	2.0	2.0	1.4	1.3	1.4	1.3	1.3	E1.6C	E1.5c	E1.1C	E1.4S	E1.58		
29	E1.5S	1.5	1.6	1.6	1.6	1.6	E1.6C	E14C	1.8	1.5	2.0	2.0	2.0	2.0	2.0	2.0	1.9	1.5	1.4	1.4	1.0	1.5	1.1	1.4		
30	1.6	1.5	1.6	1.3	1.5	1.0	1.4	El.6C	1.6	1.5	1.7	2.0	2.0	1.8	1.5	1.5	1.4	1.2	1.4	1.5	1.6	E2.0C	E 2.05	E2.0S		
31	1.6	1.4	E 2.0 C	1.4	1.9	1.7	1.5	1.6	1.7	2.0	1.7	1.6	2.0	1.5	1.6	1.5	1.6	1.0	1.2	1.8		1.5	1.7	1.5		
	${ }^{1.2}$ 1.6	2.15	1\%1.6	1.3 -1.6	1.16	1.0	1.4	${ }^{1.5} 1.8$	1.51 .9	11.8	1.72 .0	2.02 .0	2.02	2.0	.6 2.	5.2	4.6	1.2. 1.5	1.11 .3	1.38	2.5	31.6	$\stackrel{1.3}{16}$	1.41 .6		
Медиана	1.5	1.4	1.4	1.5	1.5	1.3	1.6	1.6	1.7	2.0	2.0	2.0	2.0	2.0	2.0	1.7	1.5	1.4	1.3	115	1.5	1.5	1.5	1.5		
учтево	20	23	22	23	21	23	19	17	23	26	26	23	23	25	26	26	28	22	24.	25	24	22	24	2.2		
	0.2	0.3	0.5	0.3	0.5	0.6	0.3	0.3	0.4	0.2	0.3				0.4	0.5	0.2	0.3	0.2	0.2	0.3	0.3	0.3	0.2		

[^0]Станция Abmamवmuческоя

станани Anma=Ama,
долгта_ $76^{\circ} 555^{\prime} \mathrm{F}$ широта $43^{\circ} 15^{\prime} \mathrm{N}$

ИOHOCФEPHLE ДAHHWE

liем подсчитана Man62UH61M

ДнН	${ }^{20} 225$	$\begin{gathered} 01 \\ 2,25 \\ \hline \end{gathered}$	$\begin{gathered} 02 \\ 2 \times 25 \\ \hline \end{gathered}$	03 2,35	04 2.45	$\begin{gathered} { }^{05} \\ 2.55 \end{gathered}$	$\begin{array}{c\|} 06 \\ 2.85 \end{array}$	$\begin{array}{\|c\|} 07 \\ U 3.00 S \end{array}$	08 c	$\begin{gathered} 09 \\ 2.95 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 2.90 \end{gathered}$	$\begin{gathered} 11 \\ 2.75 \end{gathered}$	12 c	c	14 \mathcal{L}	$\begin{array}{ll} 15 & \\ & C \\ \hline \end{array}$	16 2.75	$\begin{gathered} 17 \\ 2.85 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ \text { U3.000 } \end{gathered}$	$\begin{gathered} 19 \\ \cup 2.70 S \end{gathered}$	$\begin{gathered} 20 \\ 2.95 \end{gathered}$	$\begin{gathered} 21 \\ 3.05 \end{gathered}$	$\begin{gathered} 22 \\ 2.90 \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ 2.55 \end{gathered}$		
2	c	C	c	c	C ${ }^{2}$	c	c	C	c	C	c	c	c	c	c	c	c	c	C	c	c	c	C	c		
13	2.65	2.55	2.75	2.60	2.60	2.55	2.96	U3.20S	${ }^{3.156}$	c	c	c	c	c	C	v2.75C	2.80	2.90	2.90	U2.90C	2.65	2.70	2.85	2.35		
4	C	C	2.40	2.55	2.55	2.45	2.80	33.00 S	3.00	U2.900	93.00 C	- ${ }^{\text {c }}$	$\stackrel{c}{\text { c }}$	c	2.60	c	U2.85S	2.95	3.05	2.95	2.90	2.70	72.800	2.80		
5	2.60	2.60	2.55	2.65	2.70	2.65	2.80	3.05	10	\bigcirc	c^{c}	72.900	c	C	c	c	C	C	2.90	2.96	72.950	2.75	2.95	2.75		
6	2.36	2.35	2.45	2.50	2.40 F	2.45	3.00	3.10	3.05	c	c	$\stackrel{C}{c}$	72.85 C	c	c	C	2.80	2.85	V2.80S	5	2.95	2.80	2.85	2.85		
7	2.55	2.60	C	$1{ }^{1}$,	2.70	3.05	3.05	5	S	5	5	5	c	c	2.65	2.70	2.75	2.95	U3.00S	3.05	2.90	2.85	2.50		
8	2.45	2.55	2.70	2.85	2.55	2.50	2.95	\bigcirc	c	C	C	c	\boldsymbol{L}	S	S	S	C	c	c	c	¢ ${ }^{\text {c }}$	c	C	c		
9	C	2.70	2.75	2.65	2.75	2.65	2.95	U2.953	C	c	c	c	c	C	c	U2.85C	U3.00 C	3.05	$v 3.059$	U3.005	3.00	3.0	3.05	2.70		
10	2.55	2.65	2.60	2.65	2.65	2.70	3.00	3.1 .5	c	c	\underline{C}	c	c	U2.802	2.80	2.70	c	2.95	s	c	c	C	c	2.80		
11	2.65	2.85	2.90	2.75	2.70	2.85	3.15	3.10	S	93.15s	73.005	J 2.95.	72.85S	c	c	c	c	2.85	3.06	S	3.15	2.90	3.15	2.85		
12	2.70	2.75	2.70	2.70	2.60	2.70	Y2.75S	s	c	5	c	$\stackrel{C}{C}$	U2.55C	U2.55c	C	\bar{C}	\mathcal{C}	U2.900	U3.00C	3.00	3.00	2.90	2.95	2.95		
13	L	C	2.70	2.55	2.65	2.80	3.00	V3.153	3.20	c	f	2.90	c	$\stackrel{C}{c}$	V2.75C	c	- 2	\mathcal{C}	$\stackrel{\square}{1}$	S	S	2.85	5	S		
14	C	2.70	2.70	2,80	2.85	2.85	3.10	2.90	3.10	3.00	3.00	2.75	2.70	6	s	N	U2.75s	2.80	2.85	3.00	2.85	2.95	3.00	3.00		
15	2.85	2.75	2.75	2.75	2.70	2.85	3.00	2.95	c	3.10	2.85	2.85	2.70	c	C	2.65	S	2.90	2.75	U2.85S	2.90	3.05	2.90	2.65		
16	c	2.90	${ }^{1} 3.05$ S	$73.05 S$	V2.90S	03.055	U3.05S	U3.20S	U3.00 S	U3.00 S	U3.00s	2, $\overline{85}$	72.85 C	72.656	c	c	U2.75S	U2.80C	72.956	U3.00C	3.00	2.85	2.95	2.85		
17	2.70	2.70	2.75	2.65	2.65	2.75	2.95	- C	C	C	72.95¢	J2.85	72.80C	72.70 C	\underline{L}	C	c	V3.00s	S	S	3.05	2.95	2.90	2.95		
18	2.65	2.45	2.60	2.60	${ }^{\text {c }}$	2.85	2.95	\cdots	\underline{C}	92.95c	U2.90S	s	S	C	c	- c	c	V2.85c	U 2.900	c	2.65	2.80	2.80	2.80		
19.	2.95	92.955	2.70	2.70	2.65	2.75	3.00	S	S	3.05	2.95	2.95	2.80	2.70	U2.65s	\underline{S}	s	72.805	U2.45S	U3.05C	U2.95c	U2.95C	U2.85C	U2.55C		
29	02.30C	V2.45C	72.65C	2.70	2.70	2.50	19280S	c	s	3	C	s	S	S		U2.85C	- 5	S	S	S	03.055	93.005	2.95	$\stackrel{C}{c}$		
21	152.65 C	280	2.75	2.75	2.65	2.60	2.95	3.05	3.40	3.00	$\underline{42.95 C}$	U2, 805	2.70	2.70	2.70	S	S	S	U2.90s	U2.75 S	2.85	2.75	2.80	2.75		
22	c	c	c	C	${ }^{2}$	C	c	c	c	c	- C	-c	C	C	c	c	c	\underline{C}	c	C	c ${ }^{2}$	c	C	C		
23	c	C	2.40	2.30	2.35	2.65	2.70	- c	c	9	5	5	5	8	5	c	2.60	U2.503	2.85	275	2.35	2.35	2.30	2.35		
24	2.35	c	C	C	c	c	\underline{c}	- c	c	C	5	S	s	S	\underline{S}	5	5	2.65	S	2.60	2.50	2.30	2.55	2.25		
25	112.205	2.35	72.60 d	U2.45C	2.20	2.45	U2.70S	-	c	C	C	2.70	S	c	C		U2.85S	U2.805	72.855	V2.85S	U2.80S	2.85	72.90 S	2.70		
2 in	72.705	2.60	2.65	U2.70 S	U2.85 S	U2.95	2.80	\square	c	\underline{C}	- s		c	c	c	U2.70 C	- 5	C	2.90	2.90	2.9	U2.605	2.60	2.55		
27	2.35	2.40			C								C	c			72.956	2.85	2.75	3.10	8.05	2.85	2.70	2.40		
28	2.20	2.15 F	U2.20]	(22.20		2.35	72.656	2.60	3.00	3.00	$y 8.00 \mathrm{C}$	2.80	2.66	c	C	5	- C	2.75	3.00	3.00	2.75	2.70	2.50	2.25		
29	2.20	2.10	2.20	2.65	2.85	2.25	2.40	2.85	2.95			2.80	U2.70S	C	C	c	C	3.05	2.90	3.15	3.15	2.90	2.70	2.45		
30	2.70	2.65	2.35	2.35	2.25	2.55	2.95	\underline{C}	C	2.90	2.90	2.90	2.80	C	c	- 5	5	2.95	2.95	3.00	72.905	2.70	2.65	2.55		
31	2.35	2.35	2.70	3.00	2.60	72.005	2.85	78.155	L	2.90	U 3.005	305	2.80	2.85	2.70	65		5		2.90		2.95	3.00	2.65		
	2.35	$\frac{2.48}{2.70}$	2.45 2.75	$\frac{2.55}{2.75}$	$\frac{2.55}{2.70}$	$\frac{2.50}{2.80}$	2.80 3.00	2, 2.95	. 1.00	$\frac{2.90}{3.00}$	3, 3.002	- 1.96	2.70	$\frac{2.65}{2.80}$	$\frac{165}{2.75}$	$\frac{2.65}{2.85}$	735 2.85	2.80.95	$\frac{285}{3.00}{ }^{2}$	28.00	${ }^{2.80}$	70, 2.95	2.70 2.95	${ }^{2.50} 2.80$		
медваиа	2.55	2.60	2.30	2.65	2.65	2.65	2.95	3.05	3.06	3.00	U2.95	2,85	2.80	V2.70	2.70	02.70	02.80	2.85	2.90	2.95	2.95	2.85	2.85	2.10		
צッ¢00	23	25	26	26	24	27	27	17	10	12	13	15	13	7	6	7	$1 /$	22	22	21	25	27	26	26		
	0.35	0.30	0.30	0.20	0.15	0.30	0.20	0.20	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.20	0.10	0.15	0.15	0.15	0.20	0.25	0.25	0.30		

МЕЖДУНАРОДНЫЙ ГЕОФИЗИЧЕСКИЙ ГОД

МЕЖДУНАРОДНЫЙ ГЕОФИЗИЧЕСКИЙ ГОД

Сталідмя
довгта $\quad 76^{\circ} 55^{\prime} E$ тирота $43^{\circ} 15 N$

ИОНОСФЕРНLE ДАННЫЕ
поясное время $75^{\circ} \mathrm{E}$

- Mинистерство сбязи

Кем составлена Conobbëboú
Кім подсчштана Manozeны/м

МЕЖДУНАРОДНЫЙ ГЕОФИЗИЧЕСКИЙ ГОД

Пробег пастоты от 1.0_Mrи до-18.0_Mrи 20Сек_тни.
стайия ABmоматическая

МЕЖДУНАРОДНЫЙ ГЕОФИЗИЧЕСКИЙ ГОД

ИОНОСФЕРН以Е ДАННЫЕ:

Дви 1	00	01	02	03	04	05	$\begin{array}{ll} 06 & \\ & \\ & \\ \hline \end{array}$	$\begin{gathered} 07 \\ E / 20 C \end{gathered}$	$\begin{gathered} 08 \\ 110 \end{gathered}$	$\begin{gathered} 09 \\ 105 \\ \hline \end{gathered}$		$\begin{gathered} 11 \\ 105 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 105 \\ \hline \end{gathered}$	$\begin{array}{r} 13 \\ 105 \\ \hline \end{array}$	$\begin{array}{r} 14 \\ 105 \\ \hline \end{array}$	$\begin{gathered} 15 \\ 105 \end{gathered}$	$\begin{gathered} 16 \\ 100 \\ \hline \end{gathered}$	$\begin{array}{r} 17 \\ 100 \\ \hline \end{array}$	18 B	19	20	21	22	23		
2							C		C	C	- 10	e		C	c	c	C	c	C							
3							C	105	105	105	100	E110C	100	100	100	100	100	5100 C	100							
4							B	E110C	100	100	100	100	100	100	100	100	105	110	120							
5							E 2008	105	105	100	100	100	100	100	100	100	100	E1208	E							
6	B	B	B	B	B	B		E110 C	100	100	100	I100 C	100	100	100	100	100	100	100							
7		B	C	\mathcal{C}	C	E	C	100	100	100	100	100	100	100	100	100	100	S	S							
8			B	B	B	B	E170 B	I100 C	100	100	100	100	100	100	100	100	C	C	c	c	C		C	C		
9					B	B	C	105	100	100	100	100	100	100	100	105	110	E130B	B							
10			B	B	E	B	C	110	100	100	100	100	100	100	100	A	A	100								
11			B	E	B	B	C	100	100	100	100	100	100	100	100	100	100	100	c							
12							B	C	100	100	100	100	100	100	105	100	100	1110 C	120							
13	C	C	C	E	\bar{C}	C		P 130 C	107	100	100	100	-110	107	103	105	105	100	C	5						
14					E	B	100	100	100	100	100	100	-100	100	100	100	100	B								
15		B	B	\bar{B}	B	E	B	110	105	100	100	E110C	100	100	100	100	100	100								
16		100	100	100	100	100	100	F110 B	110	100	100	100	-100	100	100	100	100	108								
17							E150B	C	C	100	100	100	100	100	1100 A	1100 A	100	100								
18					\bar{C}	B	B	- 6	C	100	100	100	100	1100日	100	100	100	100								
19							B	E1205	108	100	180	100	100	100	108	100	100	E150C	100							
20					C	\bar{C}		E 130 Cl	100	100	100	100	100	100	4100 C	0100 Cl	U1006	100								
21						B	- B	105	100	100	100	180	100	110	100	100	100	E150B	B							
22					\bar{C}	C	C	C	6	C	c	- 6	4	C	\underline{C}	- -6	C		C	c						
23					B	B	B	110	I105 C	100	100	100	100	100	110	I107C	105	105	105							
24							C	- $¢$	C	C	100	100	100	100	100	105	100	105	B	B						
25	8	8	B	B	\bar{B}	C	C	B	A	100	100	100	100	100	100	110	125	115	105	100	B					
26			B	E	B	B	B	115	105	100	100	100	100	100	103	100	120	B	B	B	B					
27	c	$\underline{1}$	C	C	c	\underline{C}	C	-C	' C	6	c	C	\underline{C}	c	C	C	110	100	B	B						
28							110	105	105	100	100	100	100	100	100	100	110	E120 B	B							
29					B	B	c	110	110	100	100	100	100	100	110	110	E120B	B	B	B						
30			B	B	B	E		E125C	100	100	100	100	100	100	71009	100	100	100	100							
31								E/25B	105	100	100	100	100	100	100	100	100	100	S							
	\sim							100110	${ }^{109} 105$	$\frac{100}{100}$	$\frac{100}{100}$	$\frac{100}{100}$	1007108	$\frac{100}{100}$	100	100	${ }_{100}^{105}$	100105	100107							
Медиана	E	100	100	E	E	E	100	105	100	100	100	100	100	108	100	100	100	100	105	100						
Учтево	1	1	1	4	3	4	3	14	24	27	28	26	28	28	28	27	26	19	9	1						
								10	5							5	5	5	7							

Примегание: точность опсгёта-5км
 crasus Anma-Ama
долота $76^{\circ} 55^{\prime} \mathrm{E}$ тмроаа $43^{\circ} / 5^{\prime} \mathrm{N}$

Дих	${ }^{00}$	110	02 110	03 110	04 110	${ }^{05}$	${ }^{06}$	$\begin{gathered} 07 \\ 115 \\ \hline \end{gathered}$	${ }_{0} 8$ 115			$\begin{gathered} 11 \\ 120 \\ \hline \end{gathered}$	$\begin{array}{r} 12 \\ 115 \\ \hline \end{array}$		14 110	$\begin{aligned} & 15 \\ & 105 \\ & \hline \end{aligned}$	16 100	17 100		$\begin{gathered} 19 \\ 105 \end{gathered}$	20 100	$\begin{gathered} 21 \\ 100 \\ \hline \end{gathered}$	$\left[\begin{array}{l} 22 \\ 100 \\ \hline \end{array}\right.$	23 100		
2	c	c	c	c	c	c		c	c	c	c	c		c				-	c	- c	c	c	c	c		
3	100	B	100	B	B	B	G	- 6	125	120	110	G	103	\square	- 6		$\underline{6}$	6	100	100	c	100	- B	c		
4	c	c	B	B	c	B	G	00	110	120	110	110	110	110	105	105	110	110	20		8	100	c	B		
5	100	100	100	B	100	100	G	G	G	G	115	115	120	100	105	100	100	6	G	-	${ }_{B}$	B^{1}	B	- B		
6	G	G	G	G	6	θ	G	G	120	120	120	-	100	100	100	100	100	100	100	B	8	100	8	E		
7	,	G	C	c	c	G	G	G	G	115	110	ipS	100	G		115	6	G	6	-	B	B	B	B		
8	B	B	G	G	G	$\underline{6}$	G	G	110	110	100	c.		6	6		- c	-c	c	- c	c	c	- \quad c	c		
9	c	8	B	C	G	6	- 6		\underline{G}	6	105	- 6	$\underline{6}$	6.	115	105	120	120	G	8	E	- c	- B	B		
10	B	B	G	G	G	G	G	6	G	100	100	100	105	G	\square	100	100	100	100	c	c	c	c	${ }_{B}$		
11	B	B	G	6	G	G	θ	G	G	105	100	105.	G	G	G	G	100	G	6	- B	B	B	- B	- 8		
12	c	c	c	E	E	B	G	6	100	120	110	105	110	G	G	G	110	G	120	110	8	B	B	B		
13	c	c	G	G	G	G	$\underline{6}$	6	6	100	110	107	100	6	105	107	105	100	G	σ	s	\underline{B}	\mathcal{S}	s		
14	c	B	B	B	G	G	G	6	G	100	100	100	6	G	100	100	100	c	B	B	100	B	B	$\therefore B$		
15	B	G	G	G	G	G	G	G	6	105	105	110	G	-	G	G	6	100	100	100	100	100	100			
16	C	100	100	100	100	100	6	G	125	100	120	100	105	105	G	100	100	100	105	100	100	c	c	c		
17	B	B	B	B	B	B	G	c		10	100	105	100	100	100	100	100	G	100	105	B		100	100		
18	100			B	C	G	\square	c	c	115	110	110	G	100	G	6	6	G	- B	- B	90	B	B	B		
19	B	8	B	8	B	B	G	G	110	110	100	100	G	G	100	6	120	G	110	V100C	$\underline{105 c}$	C	00	c		
20	C	C	c	c	G	G	G	G	G 6	105	110	105	105	105	U110 C	U100clv	V100c	100	100	105	100	B	B	c		
21	B	B	B	100	B	110	G	G	100	100	100	100	100	G	G	G	G	G	100	100	100	B	B	B		
22	c	c	c	$1 \quad c$	c	c	c	c	c	c	c	c	c	c	c		c	- c	${ }^{\text {c }}$	c		\underline{C}	c	c		
23	c	c	100	B	110	G	G	120	c	100	100	100	100	100	G	c	115	110	105	100	B	100	100	100		
24	100	c		c	c	c	c	c c	c	C	G	110	100	103	G	G	G	$G-G$	100	6	100	100	100			
25	E	G	G	G	G	G	G	105	100	100	100	125	100	100	125	$1 / 3$	120	113	105	105	G	100	100	B		
26	B			G	G	G	6	-G	105	105	100	100	100	G	- 6	G	G	G-G	G	-G	\square	B	100	100		
27	10.0	100	\underline{C}	c	c	c	c	c			- C	c		c	c	c	110	100	6	G	B	100	100	100		
28	100	100	100	c	c	110	110	105	100	100	100	100	100	100	100	120	G	G	G	- c	\underline{C}	100	100	100		
29	1005	B	B	8	G	6	G	-G	120	110	103	100	100	100			G	G	16	100	100	B	B	-10p		
30	100	100	100	B	B	6	\underline{G}	G	G 120	100	100	100	100	G	0	100	100	100	100	B	100	c	S	S		
31				100	B	B				105	100	100	100	100	100	110	100	100	5	B		100	B			
	100	109	1100			-	-	103 釈	100120	100103	100	1100	100	100	1009 110	1.100107	1100	1100	100	100105	100100	100	100100	100		
медиана	100	100	100	100	100	105	110	105	110	105	103	103	100	100	103	103	100	100	100	100	100	100	100	100		
учтено	8	6	7	4	4	4	1	. 5	14	25	27	24	21	14	14	16	19.	$14:$	15	12	$1 /$	//	10	7		
	-	-	-	-	-	-	-	14	20	3	10	10	5	5	10	7	10	10	5	5	-	-	-	-		

Cranusa Aлма-Ama
долгота $76^{\circ} 55^{\circ} \mathrm{E}$ шмрота $43^{\circ} 15^{\prime} \mathrm{N}$

Дих 1	$\begin{array}{r}00 \\ 500 \\ \hline\end{array}$	$\begin{array}{r} 01 \\ 500 \\ \hline \end{array}$	$\begin{array}{r} 02 \\ 530 \\ \hline \end{array}$	$\begin{gathered} 03 \\ y 50 \\ \hline \end{gathered}$	$\begin{gathered} 04 \\ 425 \\ \hline \end{gathered}$	$\begin{gathered} 05 \\ 390 \\ \hline \end{gathered}$	$\begin{gathered} 06 \\ 340 \\ \hline \end{gathered}$	$\begin{gathered} 07 \\ 310 \\ \hline \end{gathered}$	$\begin{array}{r} 08 \\ 330 \\ \hline \end{array}$	$\begin{array}{r} 09 \\ 330 \\ \hline \end{array}$	$\begin{gathered} 10 \\ 3 y 0 \\ \hline \end{gathered}$	$3 \in J$	$\begin{gathered} 12 \\ 390 \\ \hline \end{gathered}$	${ }^{13} \mathrm{C}$	$\begin{aligned} & 14 \\ & \quad c \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & \quad \mathrm{c} \\ & \hline \end{aligned}$	$\begin{array}{r} 16 \\ 360 \\ \hline \end{array}$	$\begin{gathered} 17 \\ 315 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 330 \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ 355 \\ \hline \end{gathered}$	$\begin{aligned} & 20 \\ & 340 \\ & \hline \end{aligned}$	$\begin{gathered} 21 \\ 300 \\ \hline \end{gathered}$	$\begin{array}{r} 22 \\ 335 \\ \hline \end{array}$	$\begin{array}{r} 23 \\ 400 \\ \hline \end{array}$		
2	C	C	C	c	c	c	c	c c	C	${ }^{\text {c }}$	c	c	C	c	C	c	C	C	C	C	c	C	c	c		
3	410	390	380	390	390	410	3330	300	310	C	c	c	C	C	C	390	380.	360	350	360	350	400	360	450		
4	C	C	460	420	420	440	350	315	315	315	330	ç	c	C	390	c	365	350	315	350	340	365	365	380		
5	400	415	430	400	390	400	350	315	315	C	C	350	C	C	C	C	C	C	345	340	330	350	350	380		
6	460	490	460	430	465	440	315	300	320	305	340	c	360	C	c	c	370	335	340	S	340	355	340	340		
7	410	425	C	C	C	400	310	325	5	S^{\prime}	335	320	370	c	c	365	360	340	340	320	300	320	340	830		
8	460	420	375	350	410	425	325	C C	C	310	325	365	375	S	5	5	C	C	c	c	C	c	C	c		
9	C	370	365	375	375	400	330	300	c	320	320	340	370	C	c	360	305	320	320	335	320	320	320	375		
10	390	385	385	380	375	360	290	300	c	c	c	c	C	375	375	390	C	350	5	C	c	C	C	375		
11	390	360	360	390	390	350	310	280	5	305	325	340.	360	C	C	c	C	325	305	5	305	320	315	355		
12	370	375	375	355	395	360	3.65	315	C	340	360	c	420	420	${ }^{\text {c }}$	c	C	380	330	330	330	330	330	330		
13	C	C	350	410	380	375	330	270	300	C	C	330	C	C	380	c	C	C	C	S	S	360	5	S		
14	C	400	400	350	350	375	315	310	310	310	325	360	375	5	5	S	350	360	325	325	350	330	325	330		
15	350	375	375	390	400	370	325	310	310	310	360	370	390	410	390	410	340	350	350	350	350	320	340	Y00		
16	C	350	325	320	330	310	310	300	300	310	330	360	360	400	380	c	365	340	350	335	330	360	320	350		
17	380	380	390°	400	380	375	340	340	C	310	340	375	375	400	C	C	c	340	5	5	325	350	350	350		
18	375	425	390	400	${ }^{\text {c }}$	370	340	C	C	335	350	S	420	C	C	C	370	365	365	C	350	375	345	350		
19	350	320	350	365	370	550	300	5	310	325	340	345	380	390	400	400	370	\$	5	300	310	330	360	440		
2046	490	435	380	375	370	420	355	C	320	325	325	S	5	S	5	350	5	S	5	325	325	310	325	C		
21	375	360	365	360	375	380	325	300	310	325	340	350	370	380	390	375	S	S	340	340	340	355	345	360		
22	C	c	C	c	c	C	C	C	c	c	C	c	C	c	C	c	c	C	C	C	c	c	c	c		
23	c	c	450	485	505	415	360	340	c	5	S	$\stackrel{\text { S }}{ }$	s	S	5	c	400	- 5	345	360	960	460	500	480		
24	475	C	C	C	c	c	C	c	c	c	5	5	5	5	S	S	S	360	S	400	450	470	410	505		
25	500	480	400	470	525	445	380	5	c	c	C	370	365	c	c	C	360	350	340	340	350	340	335	350		
25	395	390	380	380	355	340	360	c	C	c	- c	c	c	c	c	365	C	C	330	325	310	380	385	435		
27	470	450	c	c	C	c		c	-	C C	-	c	c	C	C	C	330	340	370	305	305	330	370	Y80		
28	540	570	540	U5406	C	480	375	395	305	310	325	365	375	C	390	5	340	365	315	330	360	380	420	505		
29	520	570	495	380	320	520	425	340	320	300	C	370	C	360	370	340	C	320	335	310	315	340	365	425		
30	400	375	470	475	520	410	330	C	340	310	315	360	350	370	360	390	5	340	340	325	350	370	375	415		
31	475	500	380	325	400	420	355	300	315	C	315	320	C	370	350	350	325		5	310	C	325	325	375		
	380	${ }^{375}$	$\frac{365}{340}$	${ }^{315}$	370	370820	329360	${ }^{300} 320$	310	310325	${ }^{325} 380$	340 365	$\frac{360}{385}$	$\frac{370}{400}$	370390	535	${ }_{3}^{310} 370$	$3{ }^{310} 35$	330	${ }_{3}^{325} 350$	$\frac{320}{350}$	325	330365	${ }_{3}^{350}$		
Медиана	410	400	380	390	390	900	340	310	315	310	330	360	375	385	380	370	360	390	3 O	330	370	350	3 YS	380		
Учтено	23	25	26	26	24	27	28	20	16	18	19	18	17	10	11	12	16	20	21	22	25	27	26	26		
	95	90	75	45	45	50	45:	20	10	15	15	25	25	30	20	35	30	15	20	25	30	45	35	85		

МЕЖДУНАРОДНЫЙ ГЕОФИЗИЧЕСКИ", こОД

Стандяя $A \Omega \Omega a-A m a$
довота $76^{\circ} 55^{\prime} \mathrm{E}$ тврота $43^{\circ} / 5^{\prime} \mathrm{N}$

ИОНОСФЕРНЫЕ ДАННЫЕ
пояспое время_ $75^{\circ} \mathrm{E}$

Muнистерсmbo CBqua
Lem составлена Mycamoboũ:
Кем подсчитана

Дав 1	00	$\begin{array}{r} 01 \\ f / \\ \hline \end{array}$	$\begin{gathered} 02 \\ f 1 \\ \hline \end{gathered}$	$\begin{array}{r} 03 \\ f / \\ \hline \end{array}$	$\begin{array}{r} 04 \\ f 1 \end{array}$	05	${ }^{06}$	$\begin{gathered} 07 \\ \text { h1 } \\ \hline \end{gathered}$	$\begin{aligned} & 08 \\ & \text { Cl } \end{aligned}$	$\begin{array}{r} 09 \\ c \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & c \end{aligned}$	$\begin{array}{r} 11 \\ c 1 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ \text { c } \\ \hline \end{array}$	$\begin{array}{r} 13 \\ c 1 \\ \hline \end{array}$	$\begin{array}{r} 14 \\ c 1 \\ \hline \end{array}$	$\begin{array}{r} 15 \\ e 1 \\ \hline \end{array}$	16 e_{2}	$\begin{array}{r} 17 \\ e 1 \\ \hline \end{array}$	18	19 $f 1$	$\begin{array}{r} 20 \\ f / \\ \hline \end{array}$	$\begin{array}{r}21 \\ 81 \\ \hline\end{array}$	$\begin{gathered} 22^{3} \\ f 3 \\ \hline \end{gathered}$	23 $f 2$		
2			-																							
3	$f 2$		$f 1$						hl	Cl	61		cl						c)	Cl		f1				
4								el	el	crel	cı	cier	ciel	c/el	c)	C_{2}	c)	el	el			f1				
5	$f 1$	fl	$f 1$		fl	$f 1$					CI	Cl	cl	C_{2}	C_{2}	el	21									
6									Cl	cl	CI		cl	cl	cı	c_{2}	22	e2	21			f1				
7										cl	cl	Cl	cl			c1										
8									cl	clel	el															
9											21				Cl	Cl	$c 1$	CI								
10			,							81	Cl	C2	$\underline{2}$			el	el	R1	f1							
11										CI	CI	21					22									
12									elcl	$C 1$	CI	CI	Cl				C^{2}		1	fl						
13										E1	c/	CI	cl		21	21	22	C1								
14										cl	Cl	ciel			21	25	e2				$f 1$					
15										Cl	C181	cl						e2	$f 4$	$f 2$	${ }^{+2}$	$f 1$	$f 1$			
16		C2	22	C2	22	22			CI	c1	Cl	cl	cl	Cl		21	22	el	± 1	$f 1$	${ }^{+2}$					
17										Cl	hl	cl	EIC1	EICl	el	el	cler		$f 1$	$f 3$			f2	± 2		
18	fl									Cl	hl	cl		21							$f 1$					
19									Cl	Cl	CI	$c 1$			C2		C^{\prime}		$f 1$	$f 1$	$f 2$		$f 1$			
20										Cl	CI	C1	el	Cl	Cl	Cl	22	$\ell 1$	f1	f1	$f 1$					
24				$f 1$		21			El	81	el	22	$\underline{1}$						21	$f 1$	f1					
22																										
23			f^{2}		E1			CI	,	C)	Cl	Cl	C2	21			C 1	el	el	$f 1$		$f 2$	f1	$f 2$		
24	fl											Cl	Cl	el					el		$f 3$	${ }^{4} 3$	$f 2$			
25								$C 1$	12	22	el	hl	EICI	81	hlel	21	$C 1$	1	e2	22		$f 1$	$f 1$			
21									C^{2}	CI	El	23	22										11	+1		
27.	Fl	$f^{\prime 2}$															$e 1$	el				$f 1$	${ }^{+2}$	f2		
28	+3	f1	fl			± 1	21	el	Cl	Cl	el	C2	e^{3}	R 3	23	ciel						$f 1$	$f 1$	f3		
29	f1								CI	Cl	Cl	C2	23	${ }^{2} 3$						22	$f 4$			f		
30	$f 1$	$f 1$	f1						CI	Cl	Cl	C2	C2		el	el	e2	el	81		$f 1$					
31				$f 1$						Cl	c2	C2	C2	e2	e2	CI	21	22				$f 3$				
																					-		-			
медиана																										
учтепо $^{\text {¢ }}$																										

[^0]:

