МЕЖДУВЕДОМ СТВЕННЫЙ ГЕОФИЗИЧЕСКИЙ КОМИТЕТ ПРИ ПРЕЗИДИУМЕ АН СССР

МАТЕРИАЛЫ МИРОВОГО ЦЕНТРА ДАННЫХ Б

- . Г.А. Базилевская, Э.В. Вашенюк, В.Н. Ишков,
 - Л.И. Мирошниченко, М.Н. Назарова, Н.К. Переяслова,
 - А.И. Сладкова, А.Г. Ступишин, В.А. Ульев, И.М. Черток

COJHEYHUE IIPOTOHHUE COBUTUA

КАТАЛОГ 1980 - 1986 г.г.

Данные наблюдений частиц и электромагнитных излучений

Ответственный редактор доктор фив.-мат.наук Ю.И.ЛОГАЧЕВ

SOVIET GEOPHYSICAL COMMITTEE OF THE ACADEMY OF SCIENCES OF THE USSR

MATERIALS OF THE WORLD DATA CENTER B

G.A. Bazilevskaya, E.V. Vashenyuk, V.N. Ishkov,
L.I. Miroshnichenko, M.N. Nazarova,
N.K. Pereyaslova, A.I. Sladkova, A.G. Stupishin,
V.A. Ulyev, D.M. Chertok

SOLAR PROTON EVENTS

CATALOGUE

1980 - 1986

Data on particles and electromagnetic emissions

Edited by Yu. I. Logachev

Каталог содержит данные о потоках и энергетических спектрах солнечных протонов на орбите Земли, синоптические карты Солнца, схематические временные профили потоков протонов, сведения об активных областях, радио- и рентгеновском излучениях соответствующих вспышен и другую дополнительную информацию. Рассчитан на специалистов в области солнечно-земной физики.

> Ответственный редактор доктор физ.-мат. наук D.M.Joravea

The Catalogue contains information on the fluxes and energy spectra of solar protons at the Earth's orbit, solar synoptic charts, schematic time profiles of proton fluxes, information on active regions. X-ray and radio emission from corresponding flares and other additional data. The Catalogue is intended for scientists engaged in solar-terrestrial studies,

Editor Dr. Yu. I. Logschev

Междуведомственный геофизический комитет АН СССР, 1989.

Сдано в набор 08.01.90 В печать 25.08.89 Формат 60 x 901/16 Усл. печ. л. 10,0

T-15108

Печать офсетная Усл. кр.-ситт. 10,19

Тир. 400 экз.

3ax. 9238

Уч.-нод. п. 9,53

Цена 30 коп.

Производственно-издательский комбинат ВИНИТИ 140010, Люберцы 10, Московской обл., Октябрьский проспект, 403

СОИЕРЖАНИЕ

Нредисловие редактора	5
Введение	7
Описание Части 1	8
Опысание Прчложеныя к Часты 1	15
Описание Части 2	16
Описание Части З	SI
Литература к описанию натериалов Каталога CONTENTS	25 26
Часть 1	47
Приложение к Части 1. "Список слабых возрастаний потоков протонов у Земли за 1980—1986 гг."	79
часть 2	83
Macris 3	137

ПРЕДИСЛОВИЕ РЕДАКТОРА

Предлагаемый "Каталог солнечных протонных событий СПС 1980-1986 гг." является продолжением и развитием аналогичного "Каталога СПС 1970-1979 гг." и "Каталога энергетических спектров СПС 1970-1979 гг.", опубликованных в 1983 и 1986 гг. Здесь собраны основные сведения о СПС: потоки протонов в ряде энергетических диапазонов, начиная с 5 МэВ; поглощение радиоволн в полярных шапках типа
ППШ, наиболее вероятные источники СПС — солнечные вспышки, для которых приводятся сведения об электромагнитном излучении в рентгеновском, оптическом и
радиодиапазонах. Приведены энергетические спектры протонов, временные профили
потоков и, для событий, надежно отождествленных с источником, — синоптические
карты Солнца и конфигурации групп пятен в активных областях, где произошла
встышка — источник СПС. Для некоторых событий приведены данные о выбросах коронального вещества (ВКВ),иногда навываеных также корональными транзиентани.

В настоящий Каталог включены сведения о 104 солнечных протонных событиях за 1980—1986 гг. с потоками J (>10 МэВ) >1 с $^{-2}$ с $^{-\frac{1}{4}}$ с $^{-\frac{1}{4}}$. Нумерация СПС ведется с 1970 г., в предлагаемый Каталог вошли события NN 103—206. Материал первого Каталога СПС за 1955—1969 гг. [1] и Каталогов [2,3] вместе с настоящим
Каталогом перекрывают интервал с 1955 по 1986 гг. Отметим, что если в первые
годы наблюдения солнечных протонных событий на космических аппаратах велись
нерегулярно, то начиная с 1970 г. можно быть уверенным, что ни одно значитель—
ное событие в СКЛ не прошло незамеченным, и все они внесены в данный Каталог
и Каталоги [2,3]. В 1986 году закончился 21-й цикл солнечной активности и в
материал Каталога включены все СПС с потоком протонов J(>10 MэВ)>1 с m^{-2} с $m^{-\frac{1}{2}}$ с $m^{-\frac{1}{2}}$ имевшие место до окончания этого цикла, хотя некоторые из последних событий и
недостаточно обеспечены информацией.

Опыт работы с первыни Каталогани СПС [1,2,3] покавал, что они являются достаточно полными справочниками по СПС, содержащими сведения как об ускорен-

ных частицах, так и о сопровождающем их радиоизлучении и о других сопутствующих явлениях, изучаеных различными методами. Данные Каталога могут быть использованы при проведении статистических исследований ускоренных солнечных частиц, поиска закономерностей в их спектральных характеристиках для изучения физических процессов, Связанных с ускорением и распространением солнечных частиц. Знергетические спектры могут быть полезны при разработке методов прогновирования радиационной обстановки в околозенном космическом пространстве, при изучении проникновения частиц в магнитосферу Земли, а также при сопоставлении различных геофизических явлений с солнечной активностью (например, при оценке величины поглощения космического радиоизлучения в полярной шапке, при прогнозировании условий распространения радиоволн), т.е. в рамках более общей проблены солнечно-земных связей.

Настоящий Каталог подготовлен теми же представителями научно-исследовательских учреждений СССР, которые готовили предыдущие Каталоги в ранках рабочей группы "Каталог" в составе секции солнечных протонных событий научного совета АН СССР по проблене "Физика солнечно-зенных связей" (совет "Солнце-Зенля").

Работу над Каталогом активно поддерживали председатель совета "СолнцеЗемля" АН СССР чл.корр. АН СССР В.В.Мигулин, директор ИПП Госконгидронета
д.т.н. С.И.Авдюшин, зам.директора НИИЯФ МГУ д.Ф.м.н. М.И.Панасюк и руководители других учреждений. Оформление и подготовка Каталога к печати осуществлены в НИИЯФ МГУ, ИЗМИГАН, НИИФ ЛГУ и ПГИ КНЦ АН СССР при непосредственном
участии Е.И.Прутенской, Г.А.Даниленковой, В.Н.Медведевой, В.В.Подорольской,
Л.П.Строгановой, Н.В.Кожиной, Н.Н.Лазутиной, Н.Д.Русиновой. Всен перечисленным лицан составители Каталога выражают блогодарность.

BBEREHUE

Главная цель настоящего Каталога, по аналогии с Каталогами E1,2,33 — представить в единой форме равличные данные о солнечных протонных событиях (СПС) за 1980-1986 гг., включая большой круг связанных с мями явлений.

Католог разбит на два тома и включает перечисленные ниже материалы. В том 1 включены сведения о потоках заряженных частиц в СПС, зарегистрированных на различных коснических аппаратах и назенными средствами, о временных характеристиках и об источниках наблюдаеных потоков (Часть 1). В приложении к Части 1 дан список дней, когда вблизи Зенли наблюдались слабые $((1 \text{ cm}^2 \text{c}^{-1}, \text{cp}^{-1}))$ возрастания потоков протонов. В Части 2 тома 1 приводится информация о вспышках, которые указаны в Части 1 как источники СПС ϵ об оптическом, рентгеновском и радиоизлучении вспышек, а также информация о ВКВ. В Части 3 тома 1 содержится список и характеристики активных областей, в которых произовла вспышка источник данного СПС.

Том 2 включает: интегральные энергетические спектры протонов, схематические временные профили потоков протонов для одного эначения энергии, синоптические карты Солнца в линии Н_{ок} и долготы соединения Земли с Солнцам для СПС, надежно отождествленных со вспывками на Солнце, схемы групп пятем активной области, в которой произовла вспывка — источник СПС, сводную таблицу паказателей энергетических спектров потоков протонов для событий N103-206,т.е. для событий 1980—1986 гг. В томе 2 приведем также список работ, в которых представлены (или анализируются) результаты измерений потоков частиц и сопутствивних явлений во время включенных в Каталог СПС.

Методика получения и форма представления материала в данном Каталоге такая же, как и в Каталогах [2,3]. Ниже приведены только те сведения, которые необходины для понинания натериалов данного Каталога. Для более подробного ознаконления с различными данными, содержащимися в Каталоге, и нетодиками их волучения необходимо обратиться к соответствующим описаниям в [2,3].

OTUCAIME YACTU 1

В Части 1 Каталога приводятся донные о потоках заряженных частиц в событиях, зарегистрированных на различных космических аппаратах у Земли и наземными средствами в период с 1980 г. по 1986 г. Основным источником информации о потоках частиц служили результаты наблюдений, проведенных Институтом Прикладной Геофизики Госконгидромета на ИСЗ "Метеор", а также данные измерений на ИСЗ ІМРВ, опубликованные в «САЗ». Для мекоторых событий использованы сведения о потоках протонов, полученных на КА "Венера-13,14" и "Прогноз-8,16", авторы признательны В.Г. Столповскому, Н.Н. Володичеву, и А.Н: Подорольскому за предоставление втой информации.

Для каждого события указан наиболее вероятный источник (или источники) наблюдаемого возрастания потоков частиц. Источник события определялся на основе комплексного аналива информации в временных профилях и спектрах заряженных частиц, электромагнитном излученим вслышек (в линии Н_{ос}, рентгеновском и радиодиалавонах) и характеристиках соответствующих активных областей на Солнце. При отождествлении источников СПС в 1984—1985 гг. дополнительно привлекались данные в потоках частиц с КА "Венера~16", находившейся за лимбом Солнца. Эти данные, любевно предоставленные Е.А.Чучковым и В.И.Тулуповым, позволили более надежно оценивать ситуацию на невидиной полусфера Солнца. Критерии и методики, использованные при отождествлении источников, изложены в [23].

Отдельные событием считалось не только изолированное возрастание с простым временным профилем, инеющим один максимум, но и повторные возрастания в явлениях со сложным временным профилем, если удавалось выделить источник для того или иного повторного возрастания. В тех случаях, когда разделить источник было невозможно, возрастание со сложным временным профилем рассматривалось как одно событие.

Дия каждого события в заглавной строке приводятся характерные сведения, позволяющие отделить данное событие от других. Здесь последовательно ука-

- номер события:
- год, несяц и дата событият
- время (мировое) начала возрастания потоков протокив с энергией больве 10 ИзВ, часы;
- бала события, определяеный по таблице 1, согласно илиссификации [5].

Таблица 1 Классификация СВС по баллу 153

Балл	Первая цифра	Вторая цифра	Третья цифра
	J2) 10 MaB cm_2c_/cp_1	ПВМ на 30 M/ц	НМ увелич <mark>ению</mark> я процентах
- 2	10 ⁻² - (10 ⁻¹ 10 ⁻¹ - (10 ⁰ 10 ⁰ - (10 ¹		ng salah membalan salah sa Salah salah sa Salah
9 1 2	$10^{3} - (10^{3} - 10^{3})$ $10^{2} - (10^{3} - 10^{3})$	нит увелич. <1,5 дБ 1,5 — 4,6 дБ	нет упелет. { 3 % 3 — 10 %
3 4 X	. 10 ³ - (10 ⁴ ≥ 10 ⁴ нет изнер тина	4,6 ~ 15 дВ) 15 дВ	10 100 X > 100 X
(°)	нет намериням цифра недостоверна	нет ивнерезий мифра недостоверна	нат манерений инфра недасто-

Например: балл 231 овначает, что поток протоков с энергией) 10 МэВ ватилючен в интервале $10^2 - 10^3 \, \mathrm{cm}^{-2} \cdot \mathrm{c}^{-1} \cdot \mathrm{cp}^{-1}$, погловение в полярной мапке ратиливлучения на частоте 30 МГд составило от 4,6 до 15 дВ и увеличение скорости счета высоковиротного нейтронного монитора на уровне моря не превышало 3 %.

В первои столбце ниже вогловной строии указаны нозвания косныческих аппа ратов и вид навемных наблюдений. Примяты следующие обозначения:

Для коснических аппаратова

MET - Hereop

вес - вросноз

IMPB - Эксплорир 50

ВЕН - Венера 13,14,15,16

Дия других неблюдений:

쯊

- БАЛ измерение потоков частиц во время запусков жаров-вондов в стратосферу; НМ ~ измерение интенсивности коснических дучей с помощью нейтронных можито-
- -- измерение интенсивности коснических лучей с помощью нейтронных мониторов;
- РИОМ измерение риометрами поглощения космического радиоизлучения на частоте 30 МГц в полярных шапках.

В тобл. 2 указаны тип и энергия частиц, информация о которых приведена в Каталоге.

Таблица 2

Информация об энергетических интервалах потоков частиц, регистрируемых на космических аппаратах.

Коснический	1 Знергия, НэВ	
аппарат	Протоны	Электроны
Метепр	1 >5; >15; >25; >30; > 40; >90; >600	AND THE THE WEST WAS SET THE COST AND C
IM.8	1 13,7 - 25,2; 20-40; 40-80	1 - 5
Прогнов-В	1)160	-
Прогноз-10	1 6-19; 10-30; 30-60	
Венера-13-16	1 >25 r >30	

Необходино отметить, что детекторы на спутниках "Метеор" кроме протонов могли регистрировать также электроны с энергиями > 2-10 МэВ. В тех СПС, где можно ожидать вклада электронов в счет протонных каналов, сделаны соответствутющие принечания. Потоки протонов, изнеренные на КА "Венера-13,14", приведены к 1 а.е. Значительное расхождение наксинальных потоков нежду КА "Венера" и дру гими может объясняться как угловым удалением КА "Венера" от линии Солнце Зенля, которое приводится для каждого события, так и различием угловых хараитеристик приборов КА "Венера-13,14". Сведения о протонам па данным КА "Венера-13,14" и "Прогноз-8" частично приведены в [6,7]. Как и в Каталоге [2], здесь приведены характеристики СПС в области энергий >500 МэВ по данным НМ той станции на уровне моря, где было зарегистрирована наксинальноя анплитуда возрастання.

Динаме дифференциольных конолов КА IMP8 имелись только в виде грофи-

ков [4]. Баллонные измерения проводятся ежедневно в Мурманской области (69°N, 33°E) и Мирнон (66°,6 S, 92°,9 E). Во время СПС частота запуска зондов увеличивается, однако, как правило, время начала возрастания и точное время максимуна потока СКЛ бывает улущено. Энергия протонов определяется по астаточному пробегу в атмосфере.

Вредставленные в Каталоге данные по рионетрическому поглошению получены из непрерывного ряда наблюдений в 4-х пунктах, характеристики которых укананы в табл. 3. Все данные относятся к интервалу времени, когда ионосфера полностью освещена. Приводятся данные той станции, для которой поглощение было наибольшия [8].

Таблица З Данные пунктов риометрических наблюдений

Северное полужирие Вжное пол					вирие
Пункт наблюдения	Инвариантная широта, град	•	-	Инвариантная широта, град	
Северный полюс о. Хейса	74-84 73,8	32 32	Мирный Восток	76,8 84,3	32 29

Во втором столбце указаны вид и энергия частиц, измеренных для данного СПС. Приняты следующие обозначения:

- ПР)10 интегральный поток протонов с энергией больше 10 МэВ
- ПР 20-40 поток протонов с энергией в интервале от 20 до 40 МэВ
- ПР) 1 ГВ поток протонов с жесткостью больше 1 ГВ.

В том же столбие чказано

 - ВПШ - поглощение коснического радиоивлучения на частоте около 30 МГд, обусловленное, в основном, потоками протонов с энергией около 10 МэВ.

В третьем столбце указано время (мировое) в часах (по данным МСЗ "Метеор" и нейтронных мониторов в часах и минутах) начала возрастамия потоков частиц и эффектов в ПЛШ. За начало возрастамия потока протонов принимался момент времени, начиная с которого наблюдалось монотонное увеличение потока частиц донной энергии. Для IIII за начало эффекта прининался монент времени, когда поглощение начинало превышать 0,2 дБ.

В четвертом столоце указано время (мировое) в часах (по данным ИСЗ "Метеор" и нейтронных мониторов в часах и минутах), когда для потоков частиц данной эмергии и ППШ наблюдались максимальные вначения. Для сложных событий, имеющих два и более максимумов, соответствующие моменты представлены черее разделительный анак "/". Для событий, имеющих протяженный максимум, указаны черее тире "" начало и конец интервала времени, в котором наблюдались максимальные вначения.

Так в третьен, так и в четвертон столбцах приведенное время относится к дате события, указанной в заглавной строке. Если начало или наксимун наблюдамись в другой день, перед цифрами, обозначающими время, приводится цифра с индексом "д", указывающая дату соответствующего момента времени. Энаки ") " и " (" одначают, что начало или максимум имели несто соответственно позже или раньше приводимого времени. Время, ваключенное в квадратные скобки " [] ", говорит о том, что нет возножности определить, раньше или позже указанного мочента имел несто максимум патока частиц.

Указанные времена приводятся с точностью до ±0,5 часа по данным КА, которые обеспечены табличными вначениями среднечасовых значений потоков частиц.
Времена, определенные из графических данных Е43, указаны с точность примерно
±2 часа. Времена, указанные для ИСЗ "Метеор", приводятся с точностью ±7 минут, причем необходимо отметить, что из-за дискретности прохождения полярных
областей реальные времена начала и максимума могли наблюдаться не ранее, чем
за 30 минут до указанного времени.

Для данных стратосферных измерений время указано с точностью ± 30 мин, причем в четвертом столбце приводится время, когда фактически наблюдался наи-больший поток из всей серии вапусков во время данного события? Для данных ППВ времена приведены с точностью до ± 1 част по ± 1 временное разрешение указано

для каждой станции отдельно в третьем столбце со знаком " "".

цифры, стоящие в пятом столбце, оэначают продолжительность данного события в сутках или часах. Знаки " > " и " < " имеют общепринятое эначение. Для отдельных событий продолжительность определялась как интервал времени от начала возрастания до момента, когда интенсивность принимала фоновое вначение. В тех случаях, когда событие наблюдалось на фоне предыдущего, для последнего указывался только нижний предел продолжительности. По графическим данным КА продолжительность определялась с точностью до 0,5 суток, по табличным среднечасовым вначениям интенсивности — с точностью до 1 часа в случаях, если продолжительность была менее 3 суток, и с точностью до 0,5 суток, если больше. По данным ППШ длительность события указана с точностью до 1 часа или до 0,1 суток. По данным НМ длительность указана в часах с точностью +30 мин.

В местом столбце приведены максимальные вначения потоков в см $^{-2}$ с $^{-1}$ ср $^{-1}$ для интегральных потоков и в см $^{-2}$ с $^{-1}$ ср $^{-1}$ Нэ $^{-1}$ для дифференциальных (по данным КА и стратосферных измерений).

Для НМ в этом стольце приводится максимальное увеличение интенсивности в X и сокращенное наование станции. Приняты следующие сокращения: АП — Апатиты, ГВ — Гуз Бэй. Статистическая точность измерения интенсивности на нейтрон— ных мониторах не хуже 1 X. Для ППВ в этом стольце приводится максимальная веллична поглощения в децибеллах с точностью до 10,1 дВ.

Для сложных событий, инеющих два или более максинумов, приводятся два или более вначения потоков черев разделительный внак "/" в соответствии с моментами времени, выделенными в четвертом столбце. Приводиные вначения максимальных потоков получены при вычитании фона только для изолированных событий.
В тех случаях, когда событие наблюдалось на фоне предыдущего, вычитание вклада
последнего не производилось, учитывалось только фоновое эначение, наблюдавшееся до первого ваврастания в течение суток.

В строчкох под стоябцоми приводятся донные об источнике СПС. Приняты сжедующие обозначения:

- О встышка на видимой полусфере Солнца:
- встывна (или активность) за западным или восточным лимбом Солнца;
- О октивность области на диске Солная:
- А маменения в потоке частиц, связанные с SC.

Источник (или источники), приводимые для каждого СПС, определялись на основе принципов, изложенных в С23 в разделе "Об идентификации источников воорастаний потоков протонов со встышками на Солнце". Степень уверенности, с которой осуществлена привязка события к источнику, выражается следующим образом (показано на примере вспышек):

- данная вспыжка определенно является источником возрастания потока частиц;
- данная вспышка с большой вероятностью является источникон возрастания потока частиц;
- О #спышка, вожножно, является источником события, но есть причины, по которым эта вожножность подвергается сомнению;
- вслыжка на является основным источником, но внесла (или могла внести)
 вклад в наблюдаемые потоки протоков.

Та последовательность, в которой представлены источники, в некоторой стетени отражает установленную вначиность данного истачника для анализируеного события.

В строке, относящейся к опрелеленному вимчиу, приводятся для вспышек на диска Солица:

- время (мировое) начала вслышки в линии Н_{ос} часы и минуты по данным, опубликованным в Е43, если отсутствует ссылка; при наличии ссылки время начала вслышки приводится из цитируеной работы. Прямой скобкой объединены те вслышки, рентгеновское и (или) радисиолучение которых разделить не представляется возможным;
- КООРДИНСТЫ ВСПЫШКИЗ
- баля вспышкиз

— номер активной области по донным обсерватории Hale (HR), а с сентября 1982 г. серийный номер активной области службы Солнца National Oceanic and Atmospheric Administration, США (AR). Это сделано для удобства читателей, т.к. данные об активных явлениях на Солнце в [4] также даются в новом обозначении. Соответствующий номер НК можно найти в Части 3 тома 1 данного Каталога:

для встышек на невидимой полусфере Солнца:

- номер вредполагаемой активной области за заладным или восточным лимбом
 (в случае, если имелась информация, свидетельствующая об активной контиретной области, ушедшей за W-лимб, или выходящей из-за E-лимба);
- время (мировов) начала регистрации всплесков радиоизлучения. Солнца II и (или) IV типа часы и минуты. (в тех случаях, когда имелась информация о наблюдении таких всплесков и отсутствовала информация о вспышка в линии H_{oc});

для геомогнитных возмущений типо SC:

- время регистрации SC - часы и минуты. Указаны все SC, которые наблюдались на протяжении данного СПС, включая не совпадающие по времени с изменением в профиле частии.

во всех случаях, когда наблюдаемое время не относится к дате самого события, указанной в заглавной строке, перед временен приводится цифра с индексом " \tilde{A} ", обозначающая день, к которому относится данное время.

OTHICARME TENNOWERMS K MACTU 1

Как уже неоднократно подчеркивалось, в данном Каталоге рассматриваются события с максимальным потоком протонов у Земли. J (E > 10 МвВ)) 1 см $^{-2}c^{-1}c^{-1}$. В приложении к Части 1 речь идет о более слабых возрастаниях потоков протонов. Информация о них представлена в самой простейшей форме в виде списка дней, когала у Земли наблюдались возрастания потока протонов с интенсивностью в максимуме, не превышающей 1 см $^{-2}c^{-1}c^{-1}$. В списке указаны даты начала и конца возраст

тания во всех случаях, когда имеется информация на какон-либо из коснических аппаратов. Здесь же указан космический аппарат, на которон заресистрировано данное возрастание. При этом в качестве нижней границы интенсивности пере-численных здесь событий выбраны следующие значениях для КА ТМР8, в диапазоне энергий 13,7 - 25,2 МэВ - $J > 10^{-3}$ сп $^{-2}$ с $^{-1}$ ср $^{-1}$ МэВ $^{-1}$, для КА "Метеор" - J (E) 5 МаВ $^{-1}$ > 0,15 см $^{-2}$ с $^{-1}$ ср $^{-1}$, что соответствует J (E) 10 МэВ $^{-1}$ > 0,03 см $^{-2}$ с $^{-1}$ ср $^{-1}$.

Отождествление рассиатриваемых в данном приложении возрастаний лотоков протонов со вслышками и активными областями не проводилось, поскольку для таких относительно слобых событий, к тому же часто имеющих не очень четкий временной профиль, подобное отождествление представляет собой еще более трудную
вадачу, чем для возрастаний с умеренной или высокой интенсивностью частиц.

Естественно, что при решении вопроса о том, сопровождалась та или иная вслышка на Солнце ваметным воврастанием потока протонов у Земли, следует, наряду с рассмотрением событий, указанных в Частях 1 и 2, инеть ввиду также список дат со слабыми воврастаниями потока частиц, приведенный в приложении к
Части 1.

DRINCALME YACTH 2

В этом разделе Каталога приводится информация о вспышках, которые укаваны в Части 1 в качестве источников соответствующих возрастаний потока протонов. В отличие от С13, ны приводим данные о всех вспышках, упонянутых в Части 1, невовисимо от степени надежности отждествления: о вспышках, расснатривавмых как бесспорные (•), вероятные (•), возможные (•) источники, а также
о вспышках (•), вносящих дополнительный вклад в то или иное возрастание потока частиц.

Для каждой встышки в заглавной строке указаных дата встышки, степень надежности отождествления (Ф , Ф , О или Ф), нанер активной области по данным обсерватории Hale (HR), а с сентября 1982 г — номер активной области службы Солица NOAA США (AR), порядковый номер события, балл данного возрастания потока протонов в соответствии с классификацией [5] (см. таблицу 1).

В первой строке под ваглавием приведены данные об H_{∞} — вспышки: время (нировое) начала, наксинума и конца вспышки; координаты и балл вспышки, а
также сведения о структуре вспышки по системе МАС [4] (квадратной скобкой
объединены те вспышки, рентгеновское излучение и (или) радиоизлучение которых
равделить не представляется возможным). Последняя характеристика H_{∞} — вспышки
вакодирована в виде набора латинских букв, обозначающих следующее:

- A эруптивный протуберанец, основание которого находится на расстоянии меньше 90° от центрального меридиана;
- В вероятный конец встышки большого балла:
- В яркая точказ
- Е две или больше ярких точек;
- F несколько эруптивных центров;
- В в окрестности вспышки нет видиных пятен;
- Н вслышке солутствуют высокоскоростные вознущения темного (в поглощении) волокно;
- К несколько максинумов интенсивности;
- тривнаки внезапной активизации волокна, находящегося вбливи встышкит
- М вслышка в белом свете;
- N в непрерывном свете присутствуют поляризоционные эффекты;
- 0 наблюдения вспышки велись в линиях К и Н Са II;
- Р во вспышке набладалась эмиссия в линии ВЗ;
- Q во встышке наблюдалась эмиссия линий бальмеровского континуума;
- R отнечена асимнетрия контура линии Н_{ОС}, что позволяет предположить выброс вещества с большими скоростями;
- S уярчение следует за исчезновением волокна;
- U две яркие вспышечные ленты, пораллельные (11) или сходящиеся (Y);
- $oldsymbol{V}$ наличие варывной фазы встышки; значительное и внезапное расширение

области эмиссии встышки примерно за 1 минуту;

- 6ольшое увеличение площади области эниссии встышки после наксинуна интенсивности;
- Х необично расширена линия Ност
- Y отнечены вслышечные арочные системы:
- Z тень большого пятна залита эмиссией вспышки.

Во втором строке приведены данные о всплеске мягкого рентгеновского излучения в диапавоне 1-8 $\overset{\bullet}{A}$ (1,6- 12,7 кэВ); время начала, максимуна, конца и рентгеновский балл всплшки [9] в соответствии с таблицей 4.

Таблица 4

Классификация вслышек по нягкону рентгеновскому излучению

	Максинальный по	ток в диапазоне 1 - 8 А
Балл	эрг • cm •c	BT.H-2.c-1
B1 - B9	10 ⁻⁴ - 9·10 ⁻⁴	10 ⁻⁷ - 9·10 ⁻⁷
C1 - C9	10 ⁻³ - 9·10 ⁻³	10 ⁻⁶ - 9·10 ⁻⁶
M1 - M9	10 ⁻² - 9·10 ⁻²	10 ⁻⁵ - 9·10 ⁻⁵
X1 - X15	10 ⁻¹ -15·10 ⁻¹	10 ⁻⁴ -15·10 ⁻⁴

В последующих строках содержится информация о всплесках жесткого рентгеновского и ганна — излучений, наблюдавшихся во время данной вспышки. Основной материал по жесткому рентгеновскому излучению за 1980—1987 гг. взят из [10] по данным ИСЗ SMM. В 1981—1983 гг. жесткое рентгеновское излучение регистрироватлось на КА "Венера—13,14" [11] и относящиеся к этим данным строки помечены знаком ВЕН. Для одного события есть данные ИСЗ "Прогноз—9" [12], помеченные знаком ПРО.

В Каталоге приводятся инеющиеся в этих публикациях сведения: диапазон энергий в кэВ, времена начала, максимума и конца всплеска (часы, минуты, секунды). В последнем столбце приведены значения потоков квантов или потока энергии в следующих единицах:

⁻ по донным SMM в квонтох зо вспышку

- по донным ВЕН в эрг cm -2
- по донным ПРО в Вт. н⁻² для максинума всплеска.

Для иногих вспышек приводятся сведения о гаима-континууме с энергией квантов >300 квВ по данным С131 с указанием времени начала и конца всплеска.

В ряде встышек на ИСЗ SMM и Hinotori зарегистрировано также линейчатое гамма-излучение. Соответствующие строки, начинающиеся с указания энергии 2,2 МэВ или диалазонов 4-7, 4-8 МэВ, содержат данные о временных паранетрах излучения, а также о полном потоке (флюенсе) гамма-линий за всплеск в единицах фотон-см $^{-2}$, опубликованные в E14.15.16.173.

В следующей строке, которая начинается с сокращения "FB", приведены сведения о временном развитии вспышки в белом свете (начало, наксимум, конец в часах и минутах) из [18].

Следующие строки содержат информацию о радионстлесках, сопровождающих данную встышку.

По сравнению с Каталогом [1] здесь увеличено количество фиксированных частот. Это сделано для того,чтобы по возножности полнее отразить общую спектрально — временную структуру радиовсплеска, в частности, наличие микроволновой и дециметровой компонет, инеющих обычно различное время наксинума (и разный частотный спектр), а также нескольких наксинумов в данном радиовсплеске.

Для каждой из частот приводится время начала, максимума (с точностью до десятых долей минуты) и конца всплеска, а также десятичный логарифм наксимальной плотности потока радиоизлучения в единицах 10 Вт.м.-Пц (шестой столбец). В пятом столбце условно закодирован вид частотного спектра радиовсплеска на волнах дециметрового и сантиметрового диапазонов. При этом, как и в [1], использованы следующие обозначения:

P5 — спектр инеет наксинум на частоте 5 ГГцу P5 (2,3) означает что log максинальной плотности потока на 5 ГГц составляет 2,3 (наксиналь— ная плотность потока равна 200 единиц); если обозначение частоты спектрального наксинуна указано в квадратных скобках (напр. [P5]),

- то это означает, что данный параметр определен недостаточно надежно из-за неполноты или противоречивости исходных данных;
- 1/9 плотность потока радиоизлучения минимальна на частоте 1 ГГц и возрастает до частоты 9 ГГц; информация об интенсивности всплеска на более высоких частотах отсутствует:
- •,6/9 спектр жарактеривуется ростом интенсивности при увеличении частоти от •,6 ГГц до 9 ГГц;
- 0,6\9 плотность потока уменьшается при повышении частоты от 0,6 Пц до 9 Пц
- U2P7 плотность потока минимальна на частоте 2 ГТц и достигает максимума на частоте 7 ГТцу
- 3-9 плоский частотный спектр в диапазоне 3-9 ГГц.

В большинстве явлений для описания спектра радиовсплеска приходится использовать различные конбинации этих обозначений.

Последувшие строки описывают динамический спектр (ДС) метровой компоненты радиоизлучения. Здесь приведены данные о спектральном типе всплеска, вреия начала и конца явления, а также балл, характеризующий относительную интенсивность всплеска.

При подготовке этой части Каталога использовались данные, опубликованные в [4,19].

В последней строке указаны некоторые сведения о выбросе коронального вещества (ВКВ) или корональном транзиенте, связанном с данной вспышкой. Использованы в основном результаты наблюдений на ИСЗ Р78-1, опубликованные в [20-22] и охватывающие период до февраля 1983 г. Авторы Каталога сознают отрывочность и неполноту данных о ВКВ. Следует иметь в виду, что отсутствие сведений о ВКВ в какой-либо вспышке не означает, что это явление определенно не имело места. Возможно, что в таких событиях в подходящее время либо вообще не было наблюдений, либо локализация вспышки далеко от линба создавала неблагоприятные условия для регистрации ВКВ.

Последовательно приведеных время первого наблюдения РКВ; широтная локализация РКВ в картинной плоскости в северной (N) или южной (S) полусферах в градусах относительно солнечного экватора; в скобках — угловые разнеры ВКВ в картинной плоскости в градусах (со знаками ± дан разброс самой яркой части РКВ,
а без внаков — полная угловая ширина ВКВ); расположение ВКВ над восточным (E)
или западным (W) линбом; при наличии информации — гелиоцентрическое расстоямие
в радиусах Солнца (R) переднего края ВКВ на номент первого наблюдения и, наконец, средняя скорость РКВ также в картинной плоскости в км.с⁻¹. В одних случаях эта скорость определялась на основе анализа ряда последовательных регистраций РКВ и соответствующих диаграми высота-время, в других, помеченных эвездочкой, — исходя из единичных наблюдений ВКВ и временного интервала между моментом наблюдения РКВ и началом всплеска в мягком рентгеновском излучении или
радновсплеска II типа.

В тех случаях, когда внесто данных о локализации ВКВ приведена цифро 360 градусов, речь идет о транзиентах типа гало, которые инициированы обычно вспышками в центральной части диска и распространяются в направлении, блиаком к линии Солнце-Зенля.

ОПИСАНИЕ ЧАСТИ З

Эта часть Каталога содержит список и характеристики активных областей, в которых произошли вспышки, уверенно отождествленные с протонными событиями (•), либо с малой долей неуверенности (•). Большинство данных об активных областях в этой части взяты из бюллетеня "Солнечные данные", ГАО СССР [19] и Solar Geophysical Data, Boulder, USA [4]. Кроме того, некоторые величины — ив Quarterly Bulletin on Solar Activity. Tokyo [23].

В первой строке заголовка слева направо приводятся:

- порядковый номер кальдиевых флоккулов по данным обсерватории Hale
 (НК), а после сентября 1982 г. порядковый номер активных областей по данным NOAA E4).
- соответствующий им номер активной области обсерватории Meudon (М), в котором мервое четыреханачное число означает кэррингтоновский оборот (например, М1572-40 означает 40-ую активную область в кэррингтоновском обороте 1572):
 - гелиографическая широта центра активной области;
- дата прохождения центрального меридиана (ПЦМ) в десятых долях суток (12,5 апр. означает 1200 UT 12 апреля);
- номер группы или группы пятем, в которых происходила вспыжа, по дамным обсерватории Mount Wilson (MW), причем в случае нескольких групп первой указывается либо наибольшая из них, либо группа, в которой располагался центр тяхести вспышки (по координатам), далее двуня или тремя последними цифтрами номера тех групп, которые просуществовали не менее 7-ми суток и дали вклад во вспышечную активность дамной области:
- соответствующий можер активной области AR по NOAA, а после сентяб ря 1982 г номер активной области Big Bear (BR), порядок мумерации которой продолжает HR [4];
 - номер группы иятен по [19].

Во второй строке заголовка в том же порядке указаных

- дата и начало вспышки, давшей протонное событие в данной активной области;
- кэррингтоновская долгота (посредине строки прямо под датой ПЦМ);
 если в области произошло иного протонных событий, то соответствующие ин репиш ки (дата и начало) приводятся слева и справа от кэррингтоновской долготы.

Начиная с третьей строки приводятся данные, характеризующие активную область:

- возраст активной области в оборотах Солнца:

— краткое описание звалюции активной области, яключая номер HR или AR на предыдущем обороте, характеристику развития и нагнитную конфигурацию группы (или групп) пятем. Далее приводится общее количество вспышек, причем в скобках дается распределение их по оптическим баллам без учета яркости и рентгеновским баллам. Напримерз всего вспышек 45 ($2_4 + 1_7$; $X_2 + M_7 + C_{15}$) означает, что из 45 вспышек 4 были балла 2, 7 балла 1, 2 рентгеновского балла X, $X_1 = X_2 + X_3 + X_4 + X_5 + X_$

Далее приведены численные характеристики активной области и групп пятен на

- a) saru IIIM:
- б) на дни вспышек, вызвавших СПС;
- в) на дату наксинуна (одного или двух) развития активной области (по площади), если он (они) не совпадают с днями, указанными в а) и б).

Характеристики приводятся для всех групп пятен, указанных в заголовке, и объединяются слева квадратной скобкой для каждого дня. Используются следующие обозначения;

- Са 6100/3,5 означает, что площадь кальциевого флоккула составляла 6100 ниллионных долей видиной полусферы и его интенсивность была 3,5 (в шкале от 1 до 5) (данные из [4]);
- пятна 6400/320/19 означает, что в группе 19 пятен, общая площадь которых 6400 миллионных долей видиной полусферы, площадь наибольшего пятна 320.
 Для всех событий характеристики приводятся по данным [19]:
 - классификация групп пятен по Мак-Интошу [4];
 - магнитная классификация групп пятен (данные по [4]):
 - **А Униполярное пятно;**
 - $B \sim$ биполярноя группо пятен (B_p , $B_{f'}$ лидирующее или ведомое пят-
 - ВУ биполярная группа, в которой одно или несколько пятем нарушают типичную картину распределения полярностей;

- Y ~ сложная в нагнитном отношении группа пятен с перемещанной полярностью;
- ${f B}$ сложная в нагнитном отношеним группа с пятнами разной полярности в одной полутеми.

ЯИТЕРАТУРА К ОПИСАНИЮ МАТЕРИАЛОВ КАТАЛОГА

- Catalog of solar particle events 1955-1969. / Ed. by Z. Svestka and P. Simon. Dordrecht Holland / Boston USA. D.Reidel Publ. Company. 1975, 430 p.
- Каталог солнечных протонных событий 1970-1979 гг. (под ред. Логачева D.И.)
 М., ИЗМИРАН, 1983, 184 с.
- 3. Каталог энергетических спектров солнечных протонных событий 1970-1979 гг. (под ред. Логачева Ю.И.). Н., ИЗМИРАН, 1986, 235 с.
- Solar-Geophysical Data. National Geophysical and Solar Terrestrial Data Center. Boulder, Colorado, 1980-1986.
- Smart D.F., Shea M.A. Solar proton event classification system. Solar Phys., 1971, v.16.
- Логачев Ю.И., Мельников В.Ф. и др. Каталог событий СКЛ и радиоизлучения солиечных вспышек в период наблюдений на АМС "Венера-13,14". Горький, НИРФИ. 1987. 35 с.
- 7. Володичев Н.Н. и др. Среднечасовые скорости счета сцинтилляционно-черенковского детектора в нежпланетном пространстве по данным спутника "Прогноз-8". М., Мехведонственный геофизический конитет. 1987. 86 с.
- Боровикова В.Д., Дриацкий В.М., Ульев В.А. Явления РСА в 1971-1976 гг. по Арктике. В кн.: "Геофизические исследования в высоких виротах". Л., Гидрометеоиздат, 1980 (Труды ААНИИ, т.336), с.92-99.
- 9. Baker D. Flare classification based upon X-ray intensity. AIAA paper 70-1370, Ala., 1970.
- Dennis B.R., Frost K.J., Orwig L.E. HXRBS-event listing 1980-1982. NASA N 84998. Goddard Space Flight Center, 1983.
- Каталог данных 1 ноября 1981 13 марта 1983 "Всплески жесткого рентгеновского излучения Е > 50 квВ, зарегистрированные на КА "Венера-13" и "Венера-14". М., материалы Мирового центра данных Е, 1987.
- 12. Данные наблюдений 1 июля 1983 10 февраля 1984 "Солнечные всплески жест- $\mathbf{4}$ — \mathbf{T}

- кого рентгеновского излучения, зарегистрированные на ИСЭ "Прогноз-9". М., материалы мирового центра данных Б, 1988.
- 13. Vestrand W.T. et al. Astrophys. J., 1987, v.322, p.1010-1027.
- 14. Cliver E.W., Forrest D.J., McGuire R.E., Rosenvinge T.T. Nuclear gammarays and interplanetary proton events. 18th Int. cosmic ray Conf., Bangalore. 1983. v.10. p.342-345.
- 15. Yoshimori M., Watanabe H. Observations of solar flare gamma-rays and protons. 19th Int. cosmic ray Conf., La Jolla, 1985, v.4, p.90-93.
- 16. Hua X.-M., Lingenfelter R.E. Solar flare neutron production and the angular dependence of the capture gamma-ray emission. Solar Phys., 1987, v.107. N 2. p.351-383.
- 17. Kallenrode H.-R., Rieger E., Wibberenz G., Forrest D.J. Energetic Charged particles resulting from solar flares with gamma-ray emission. 20th Int. cosmic ray Conf., 1987, Moscow, v.3, p.70-73.
- 18. Neidig D.F., Cliver E.W. A catalog of solar white-light flares (1859-1982) including their statistical properties and associated emissions. AFGL-TR--83-0257; Environmental research papers, N 856, 1983.
- 19. Солнечные данные. Л., Наука, 1980-1986.
- 20. Sheeley N.R., Jr., Steward R.T., Robinson R.D., Howard R.A., Koomen M.J., Michels D.J. Associations between coronal mass ejections and metric type II bursts. Astrophys. J., 1984, v.279, N 2, pt 1, p.839-847.
- Sheeley N.R., Jr., Howard R.A., Koomen H.J., Michels D.J., Schwenn R.,
 Muhlhauser K.H., Rosenbauer H. Coronal mass ejections and interplanetary
 shocks. J. Geophys. Res., 1985, v.90, N A1, p.163-175.
- Cane H.V., Sheeley N.R., Jr., Howard R.A. Energetic interplanetary shocks, radio emission and coronal mass ejections. J. Geophys. Res., 1987, v.92, p.9869-9874.
- 23. Quarterly Bulletin on Solar Activity. International Astropomic Union, Tokyo, 1980-1986.

~ 27 _

CONTENTS

Editor's Foreword	28
Introduction	30
Description of Part 1	30
Description of the Appendix to Part 1	38
Description of Part 2	39
Description of Part 3	43
References to the Descriptions	25
Part 1	46
Appendix to Part 1: "List of small proton increases near	
the Earth during 1980-1986"	79
Part 2	83
Part 3	127

EDITOR'S FOREWORD

This Catalogue of Solar Proton Events (SPE) 1980-1986 is an extension of a similar SPE Catalogue for 1970-1979 and of the Catalogue of SPE Energy Spectra 1970-1979 published in 1983 and 1986. The present Catalogue is a collection of the main SPE data, namely, proton fluxes in some energy ranges starting from 5 MeV, radio wave absorption in polar caps of PCA type, the most probable SPE sources, i.e. solar flares for which the data are presented on electromagnetic emission in the X-ray, optical, and radio bands. The proton energy spectra and the flux time profiles are given, as well as (for the events identified reliably with sources) the synoptic charts of the Sun and the sunspot group configurations in the active regions where an SPE-producing solar flare occured. The data on coronal matter ejections (CME), called sometimes coronal transients, are also presented.

The present Catalogue includes the data on 104 SPE's of 1980-1986 with fluxes $j(>10 \text{ MeV}) \ge 1 \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$. The SPE's are numbered from 1970; the Catalogue includes events Nos. 103-206. The materials of the first SPE Catalogue for 1955-1969 [1] and of the Catalogues [2,3], as well as of the present Catalogue, cover the interval from 1955-1986. It should be noted that, whereas the initial spacecraft observations of SPE's were irregular, we can be quite sure that not a single substantial solar cosmic ray event has gone unnoticed since 1970 and that they all have been included in the present Catalogue and in Catalogues [2,3]. The 21-st solar activity cycle ended in 1986. The Catalogue includes all the SPE's with proton fluxes $j(>10 \text{ MeV}) \ge 1 \text{ cm}^{-2} \text{s}^{-1}$ which occured before the end of the cycle, although some of the last events have but insufficient informational strength.

The experience gained with the initial Catalogues [1,2,3] has shown that they are sufficiently complete SPE handbooks containing information about the accelerated particles, the accompanying radio emission, and other associated events studied by different methods. The catalogued data can be used to carry out statistical studies of accelerated solar particles

to seek for regularities in their spectral characteristics and to study the physical processes associated with acceleration and propagation of solar particles. The energy spectra may be of assistance when developing the method for predicting radiation situation in the Earth's environments, when studying particle penetration into the Earth's magnetosphere, and when juxtaposing various geophysical events with solar activity (for example, when estimating the cosmic radio absorption in polar caps and when predicting radio wave propagation conditions), i.e. in terms of a more general problem of solar-terrestrial relationships.

The present Catalogue has been prepared by the same personnel from the scientific-research institutions of the USSR who prepared the earlier Catalogues within the framework of the Catalogue Working Group of the Solar Proton Event Division of the Scientific Council of the Academy of Sciences of the USSR on Physics of Solar-Terrestrial Relationships (the Sun-Earth Council).

The work of compiling the Catalogue was actively supported by the Corresponding Member of the Academy of Sciences of the USSR V.V.Migulin, Dr. S.I.Avdyushin (Director of the Institute of Applied Geophysics of the State Committee on Hydrometeorology), Dr. M.I.Panasyuk (Deputy Director of the Institute of Nuclear Physics of Moscow State University), and the administration of other scientific institutions. The Catalogue was edited and prepared for publication at IZMIRAN, Institute of Nuclear Physics, and Institute of Applied Geophysics with direct assistance from E.I.Prutenskaya, G.A.Danilenkova, V.N. Medvedeva, V.V.Podorolskaya, L.P.Stroganova, N.V.Kozhina, N.N.Lazutina, and N.D.Rusinova. The authors of the Catalogue express their sincere gratitude to them.

The list of references cited is attached to the Catalogue after the main text.

Introduction. By analogy with Catalogues [1-3], this Catalogue is aimed mainly at presenting, in a unified form, the various SPE data of 1980-1986 which include a variety of associated phenomena.

The Catalogue has been broken into two volumes and includes the materials as mentioned below. Volume 1 contains information about the SPE's detected on various spacecrafts and with ground-based instruments, about the temporal characteristics of the proton fluxes and the sources of the observed fluxes (Part 1). Appendix to Part 1 is a list of days when weak (<1 cm⁻²s⁻¹sr⁻¹) proton flux increases were observed near the Earth. Part 2 of Volume 1 contains information about the solar flares indicated in Part 1 to the the SPE sources, namely, about the optical, X-ray, and radio emissions from the flares and about coronal mass ejections. Part 3 of Volume 1 contains the list and the characteristics of the active regions where the SPE-producing flares occured.

Volume 2 includes the integral proton energy spectra, the schematic intensity profiles of protons, the solar synoptic charts in H-alpha line, the connection longitudes of the Earth for the SPE's identified reliably with solar flares, the charts of the sunspot groups of the active regions where the SPE-producing flares occured, and a summary table of the spectral indices of the proton flux energy spectra for events Nos 103-206, i.e. for the events of 1980-1986.

The methods for obtaining and the presentation form of the material in the Catalogue are the same as in the Catalogues [2,3]. Only the information necessary for understanding the materials of this Catalogue is presented below. A more detailed description of the catalogued data and of the methods for obtaining them can be found in [2,3].

DESCRIPTION OF PART 1

Part 1 of the Catalogue presents the data on charged particle fluxes in the events detected on different spacecrafts near the Earth and with ground-based instruments from 1980 to 1986. The particle flux data were derived mainly from the results of the Meteor satellite measurements made by the group

of the Institute of Applied Geophysics of the State Committee of Hydrometeorology of the USSR and from the IMP-8 observation data [4]. The data on some of the events were inferred from the Venera-13,14 and Prognoz-8-10 measurements of proton fluxes. The authors are indebted to Drs. V.G.Stolpovsky, N.N. Volodichev, and A.N.Podorolsky for their kind presenting the relevant information.

The source identification of an observed particle flux increase is given for each event. The source identification was produced by a complex analysis of the data on the time profiles and the spectra of charged particles, on the flare-generated electromagnetic radiation (in the H_d-line and in the X-ray and radio bands), and on the characteristics of the respective solar active regions. The data on particle fluxes obtained from Venera-16 which was behind the solar limb were also used when identifying the SPE sources. These data, which were kindly presented by Drs. E.A.Chuchkov and V.I.Tulupov, have made it possible to estimate the situation on the Sun's invisible hemisphere more reliably. The criteria and the methods used when identifying the sources are described in [2].

Not only an individual event with a smooth time profile exhibiting a single maximum, but some of the peaks in the events with complicated time profiles were considered to be individual events if a source of one or another successive maximum could be identified. In case a source could not be identified, an SPE with a complicated time profile was regarded as a single event.

The heading line for each event indicates the characteristic information permitting a given event to be distinguished from others, namely:

- number of the event;
- year, month, and date of the event;
- time (universal) of the onset of the > 10 MeV proton flux increase (hours);
- importance of the event defined by Table 1 according to the classification [5].

Table 1
SPE classification according to [5]

Importance	First digit	Second digit	Third digit
	j ≥ 10 MeV	PCA at 30 MHz	NM increase
	$cm^{-2}s^{-1}sr^{-1}$	dB	in per cent
- 2	10 ⁻² - 10 ⁻⁴	no increase	no increase
- 1	$10^{-1} - 10^{0}$	••	
0	10 ⁰ - 10 ¹	•••	- ,
1	10 ¹ - 10 ²	<1.5	< 3%
2	10 ² - 10 ³	1.5 - 4.6	3 - 10%
3	10 ³ - 10 ⁴	4.6 - 15	10 - 100%
4	≥10 ⁴	>15	> 100%
x	measurements unavailable	measurements unavailable	measurements unavailable
\mathbf{C}_{l}	the digit uncer- tain or implied	the digit uncer- tain or implied	

For example: importance 231 means that the \geqslant 10 MeV proton flux is within 10^2-10^3 cm⁻²s⁻¹sr⁻¹, the PCA at 30 MHz is 4.6-15.0 dB, and the high-latitude sea-level neutron monitor increase does not exceed 3%.

The first column under the heading line indicates the name of spacecraft and the type of ground-based observations. The following notation is used

MET - Meteor

PRO - Prognoz

IMP 8 - Explorer-50

VEN - Venera-13-16

for spacecraft and

BAL - particle flux measurements during stratospheric balloon flights:

NM - cosmic ray intensity measurements with neutron monitors:

RIOM - riometer measurements of the polar cap absorption at 30 MHz.

Table 2

Table 2 presents the specie and energy of the particles the data on which are catalogued.

Data on the energy ranges of the particles detected on board spacecraft

Spacecraft	Energy, MeV			
:	Protons	Electrons		
Meteor	>5; >15; >25; >30; >40; >90; >600	:		
IMP 8	13.7-25.2; 20-40; 40-80	1 - 5		
Prognoz-8	>100	:		
Prognoz-10	6-19; 10-30; 30-60	:		
Venera-13-16	>25; >30	:		

It should be noted that the Meteor detectors recorded not only protons, but also > 2-10 MeV electrons. Appropriate notes are made for the events where an electron contribution to the proton counting rates can be expected. The proton fluxes measured on board Venera-13 and 14 have been reduced to 1 a.u. A substantial difference in the maximum fluxes between Venera and other spacecraft may be explained by angular distances of the Venera spacecraft from the Sun-Earth line (the respective distance is indicated for each event) and by the difference in the angular characteristics of the Venera-13 and 14 instruments. The proton data inferred from the Venera-13,14 and Prognoz measurements are partly presented in [6,7]. As in the Catalogue [2], the >500 MeV SPE characteristics presented have been inferred from the data of a ground-based station where the maximum increase amplitude was recorded.

The IMP-8 differential channel data were available only in the graphical form [4]. The balloon-borne measurements are made daily in the Murmansk region (69N, 35E) and at Mirny (66°.6S, 92°.9E). Balloons are launched more frequently during SPE, but the onset time and the exact maximum time of the event prove, as a rule, to be missed. The proton energy is inferred from the proton residual paths in the atmosphere.

The catalogued riometric absorption data have been obtained from a continuous series of observations at four points whose characteristics are presented on Table 3. All the data relate to the time interval when the ionosphere is sunlit entirely. The presented data are from a station with the highest absorption [8].

Northern hemisphere		Southern hemisphere			
Observ. point	Geomagn. latitude, degree	Riometer frequency, MHz	Observ. point	Geomagn. latitude, degree	Riometer frequency MHz
North Pole	74-84	32	Mirny	76.8	32
Isl. Heiss	73.8	32	Vostok	84.3	29

The second column indicates the specie and energy of the particles measured in a given SPE. The following notation is used:

IIP >10 - the integral flux of the 10 MeV protons;

IIP 20-40 - the proton flux in the 20-40 MeV range;

IIP >1 GV - the flux of protons of rigidities above 1 GV.
The second column indicates also

IIIII - the polar cap absorption at ~30 MHz due mainly to ~10 MeV proton flux.

The third column indicates the onset time (universal) in hours, (according to the Meteor and NM data in hours and minutes) of the particle flux increase and PCA effect. The moment from which a particle flux of a given energy began increasing monotonely was taken to be a proton increase onset. The moment when absorption began exceeding 0.2 dB was taken to be a PCA effect onset.

The fourth column indicates the time (universal) in hours, (according to the Meteor and NM data in hours and minutes) when the maximum values of particle fluxes of a given energy and of PCA were observed. The respective moments for complicated events with two and more maxima are separated by the sym-

bol "/". The beginning and the end of a time interval when the maximum values were observed for the events with extended maxima are separated by dash "-".

The times presented in the third and fourth columns relate to the event date indicated on the heading line. If an onset or a maximum was observed on another day, a numeral with subscript A indicating the date of the respective moment is introduced before the numerals designing time. The symbols ">" and "<" mean that an onset or a maximum occurred, respectively, later or earlier than the time presented. The time in square brackets [] indicates that whether a given particle flux maximum occurred before or later than the moment presented cannot be determined.

The times are presented to within 0.5 hour according to the spacecraft data whose mean-hourly values of particle fluxes have been tabulated. The times inferred from the plotted data [4] are indicated to within approximately ±2 hours. The times, indicated for Meteor satellites are presented to within ±7 min. It should be noted that, because of discrete passages through polar regions, the real times of onset and maximum could be observed not earlier than 30 min before the time indicated.

The times for stratospheric observations are indicated to within ± 30 min. The fourth column indicates the time when the highest flux in the entire set of launchings for a given event was actually obtained. The times of the PCA data are indicated within up to ± 1 hour. The NM time resolution is indicated for each instrument separately in the third column with symbol " Δ ".

The numerals presented in the fifth column indicate duration of a given event in days or hours. The symbols ">" and "<" have the commonly accepted meaning. The duration of individual events is defined to be a time interval from an increase onset to the moment when the intensity is assumed to be at the background level. In the cases when an event was observed during the high background from a previous event, only the lower duration limit is indicated for the previous event. The duration was inferred to within 0.5 day from the plotted data, to

within 1 hour from the tabulated mean intensities if the duration was less than 3 days and to within 0.5 days in case of longer durations. The PCA-inferred durations of events are indicated to within 1 hour or to within 0.1 day. The NM-inferred duration is indicated to within ± 30 min.

The sixth column presents the maximum fluxes in cm⁻²s⁻¹sr⁻¹ for integral fluxes and in cm⁻²s⁻¹sr⁻¹MeV⁻¹ for differential fluxes (as inferred from the spacecraft and stratospheric measurement data).

The sixth column presents also the NM maximum increase of the intensity in per cent and the abbreviated names of stations (An for Apatity and IB for Goose Bay). The statistical accuracy of the NM-measured intensities is not worse than 1%. In case of PCA, the sixth column indicates the maximum absorption in dB to within up to ±0.1 dB.

In case of complex events with two and more maxima, the column indicates two or more values of fluxes separated by the symbol "/" in accordance with the time moments singled out in the fourth column. The presented values of the maximum fluxes have been obtained by subtracting the background for isolated events. In case an event was observed against the background of a previous event, the contribution of the latter was not subtracted and only the background value observed before the first maximum within a day was included.

The lines under the columns present the data on SPE source. The following notation is used:

- O a flare on the Sun's visible hemisphere;
 - O a flare (or activity) behind the western or eastern limb of the Sun;
 - active regions on the Sun's disk;
 - Δ particle flux variations relevant to SC.

The source (or sources) presented for each SPE were identified on the basis of the concepts described in [2] in the section "On the Association of the Proton Events with the Solar Flares". The confidence degree in associating a given event with a given source is presented as (examples of flares are used)

- the flare is quite reliably the source of a particle

flux increase;

- - the flare is most probably a source of a particle flux increase;
- O the flare is probably a source of an event, but the probability is dubious for some reasons;
- O- the flare is not the main source, but contributes (or may contribute) to the observed proton fluxes.

The presented sequence of sources reflects, to an extent, the found significance of a given source in the analyzed event.

The lines relating to a given sign indicate for the flares on the Sun's disk:

- time (universal) of H_d flare onset in hours and minutes according to the data of [4] if a particular reference is absent; if such a reference is available, the flare onset time is taken from the cited work. The vertical dashes confine the flares where K-ray and/or radio emission cannot be discriminated;
- coordinates of a flare;
- importance of a flare:
- number of the active region inferred from the Hale (HR) observatory data; from September, 1982, serial number of the active region is indicated according to the Solar Service of the US National Oceanic and Atmospheric Administration (AR). This is for the readers' convenience because the data on active solar events are presented in [4] in their new notation. The respective HR number may be found in Part 3 of Volume 1 of this Catalogue;

for the flares in the Sun's invisible hemisphere:

- the number of a supposed active region behind the western or eastern limb (if any information is available which indicates the occurrence of a particular active region submerging to behind the W-limb or emerging from behind the E-limb):
- time (universal) of the beginning of the type II and/or IV solar radio bursts in hours and minutes (in the cases when information about observations of such bursts was available and when the information about an H_{ot} -flare was absent);

for the SC-type geomagnetic disturbances:

- SC detection time in hours and minutes. All the SCs observed throughout a given SPE are indicated including the events not coinciding in time with particle profile variations.

In all cases where the observed time does not relate to the date indicated in the heading line, a numeral with index showing the date for a given time is presented.

DESCRIPTION OF APPENDIX TO PART 1

As emphasized repeatedly, this Catalogue includes the events with the maximum proton flux near the Earth $J(E > 10 \text{ MeV}) > 1 \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$. Appendix to Part 1 deals with weaker increases of proton fluxes. The relevant information is presented in a by far simplest form as a list of days when the maximum of the proton intensity observed near the Earth did not exceed 1 cm $^{-2} \text{s}^{-1} \text{sr}^{-1}$. The list indicates the dates of the onset and end of a given increase in all the cases when data from any spacecraft are available. Also indicated are the spacecraft which detected a given event. The following magnitudes have been selected to be the lower intensity limit of the events listed: $J = 10^{-3} \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1} \text{MeV}^{-1}$ in the 13.7-25.2 MeV range for IMP-8 and $J(E > 5 \text{ MeV}) = 0.15 \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$, which corresponds to $J(E > 10 \text{ MeV}) = 0.3 \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$, for Meteor satellites.

The proton flux increases mentioned in the Appendix were not identified with flares and with active regions because the identification in case of the given relatively faint events which, besides, exhibit frequently a not much expressed time profile is an even more difficult task compared with the events with moderate or high particle intensity.

Obviously, when finding whether one or another solar flare is accompanied by a noticeable increase of proton flux near the Earth or not, it is necessary to examine not only the events mentioned in Parts 1 and 2, but also the list of dates with weak increases of particle flux presented in the Appendix to Part 1.

DESCRIPTION OF PART 2

This section of the Catalogue presents information about the flares indicated in Part 1 to be sources of the respective increases of proton flux. Contrary to [1], we present data on all flare sources of particle events which have been marked as certain (•), probable (•), possible (•) sources or contributing sources (•).

The heading line indicates for each flare: the date, the degree of certainty in the association (• , • , • o or • o), and the active region number according to the Hale observatory (HR) data. Besides, from September, 1982, the number of active region according to the Solar Service of the US NOAA (AR), the ordinal number of each event, and the importance of a given proton flux increase as classified in [5] (see Table 1) are indicated.

The first line under the heading presents the following H_{OL}-flare data: time (universal) of the commencement, maximum, and end of a flare; the coordinate and class of a flare. Also presented is information about the flare structure according to the IAU system [4]. (The square brackets enclose the flares where X-ray and/or radio emissions cannot be separated). The last H_{OL}-flare characteristic is codified through Latin letters which denote:

- A an eruptive prominence whose base is less than 90° from the central meridian;
- B probably the end of a more important flare;
- D bright point;
- E two or more bright points;
- F several eruptive centers;
- G no visible spots in the neighbourhood;
- H flare accompanied by a high-speed dark (in absorption) filament;
- K several intensity maxima;
- L existing filaments show signs of sudden activity;
- M white-light flare;
- N continuous spectrum shows polarization effects;
- 0 observations have been made in the Ca II, H or K lines;

- P flare shows helium D, in emission;
- Q flare shows the Balmer continuum in emission:
- R marked asymmetry in H_d-line suggests ejection of high-velocity material;
- S brightness follows the disappearance of filament (same position):
- U two bright branches, parallel (||) or converging (Y);
- V occurrence of an explosive flare: important and abrupt expansion in about a minute with or without important intensity increase;
- W a great increase in area after the time of maximum intensity;
- X unusually wide Hd -line;
- Y system of loop-type prominences:
- Z major sunspot umbra covered by flare.

The second line presents the data on soft X-ray bursts in the 1-8 Å band (1.6-12.7 keV), namely, the time of the commencement, maximum, and end of the flare and its X-ray class [9] according to Table 4.

Table 4 Classification of flares as regards soft X-rays

+	Maximum flux in the 1-8 Å band			
Importance -	erg·cm ⁻² g ⁻¹	W•m ⁻² e ⁻¹		
B1 - B9	10 ⁻⁴ - 9•10 ⁻⁴	10 ⁻⁷ - 9•10 ⁻⁷		
C1 - C9	$10^{-3} - 9 \cdot 10^{-3}$	10 ⁻⁶ - 9·10 ⁻⁶		
M1 - M9 .	10 ⁻² - 9•10 ⁻²	10 ⁻⁵ - 9•10 ⁻⁵		
X1 - x15	10 ⁻¹ -15+10 ⁻¹	10 ⁻⁴ -15•10 ⁻⁴		

The next lines present information about the hard X-ray and gamma-ray bursts observed during a given flare. The main data on the hard X-rays in 1980-1987 are inferred from the SMM satellite measurements [10]. In 1981-1983, the hard X-rays were detected on board Venera-13 and 14 [11]; the respective data in a line are labelled with the sign "REH". The Prognoz-9 data for one of the events [12] are labelled with the sign

"ITPO" -

The Catalogue presents the following information from [10-12]: energy range in keV, times of commencement, maximum, and end of a burst. The total number and energy flux of protons are shown in the last column. The units are:

- protons/event from SMM data;
- erg · cm 2 from BEH data;
- Wt·m⁻² for a peak intensity from HPO data.

The gamma-ray line emission was also detected in some flares on board SMM and Hinotori satellites. The respective lines, which begin with indicating the 2.2 MeV energy or the 4-7, 4-8 MeV ranges, present the data on the temporal parameters of the emission and the total flux (fluence) of gamma-lines during a burst in units of photon·cm⁻² [14-17].

The next line, starting from abbreviation "BB" presents information about time development of a flare in white light (commencement, maximum, and end in hours and minutes) [18].

The remaining lines present information about the radio bursts accompanying a given flare.

The number of fixed frequencies is increased compared with the Catalogue [1] with a view to reflecting, as completely as possible, the general spectral-time structure of a radio burst, in particular, the occurrence of the microwave and decimetric components, whose times of maximum (and frequency spectra) are usually different, and several maxima in a given radio burst.

The times of commencement, maximum (to within tenths of a minute), and end of a burst and the decimal logarithm of the peak flux density in units of $10^{-22} \text{W} \cdot \text{m}^{-2} \text{Hz}^{-1}$ are indicated for each of the frequencies (the sixth column). The type of the radio burst frequency spectrum at decimetric and centimetric wavelengths is coded in the fifth column. As in [1], the following notation is used:

P5 - the spectrum exhibits a maximum at 5 GHz; P5 (2.3)
means that log of the maximum 5 GHz flux density is
2.3 (the maximum flux density is 200 units; if the
frequency of the peak flux density spectrum is indicated in square brackets (for example, [P5]),
this means that a given parameter has been determin-

- ed with an insufficient confidence because the input data were either incomplete or conflicting.
- 1/9 the radio flux density is minimum at 1 GHz and increases up to 9 GHz; any information at higher frequency is not available;
- 0.6/9- the spectrum is characterized by a flux density increase toward high frequencies (from 0.6 GHz to 9 GHz);
- U2P7 the flux density is minimum at 2 GHz and peaks at 7 GHz:
- 3-9 flat flux density spectrum in the 3-9 GHz frequenccy range.

Various combinations of the above designations are to be used in most of the events to describe a radio burst spectrum.

The next lines describe the dynamic spectrum (DS) of the metric component of radio bursts and present also the data concerning the spectral type of the burst, the times of commencement and end of the event, and the importance characterizing relative intensity of the burst.

This part of the Catalogue has been prepared using the data published in [4,19].

The last line indicates some information concerning the coronal mass ejections (CME) or the coronal transient associated with a given flare. The P78-1 observation results [20-22] covering the period until February, 1983, have been used. The authors of this Catalogue are aware of fragmented character and incompleteness of the CME data. It should be borne in mind that the absence of CME information for a given flare does not mean that the CME did not occur at all. It is quite possible that observations were not made at appropriate time, or else the localization of flare far from the limb created unfavourable conditions for a CME to be detected.

The line indicates successively: the time of the first observation of CME, the latitude localization of CME in the sky plane in the norther (N) or southern (S) hemisphere in degrees relative to the Sun's equator; presented in brackets is the angular span of CME in the sky plane in degrees (the span of the center of CME emission is presented with the sym-

bols ±; the total angular span of CME is presented without the symbols); the CME position above the eastern (E) or western (W) limb; the radial position in the Sun's radii (R) of the CME leading edge at the time that it was initially observed (if relevant information is available); the mean CME velocity in km·s⁻¹, also in the sky plane. In some cases, the velocity was determined by analyzing a series of CME images and the respective altitude-time diagrams. In other cases (indicated by asterisks) the velocity was inferred from individual CME observations and from the time interval between the CME observation moment and the commencement of a burst in soft X-rays or of a type II radio burst [20-22].

The cases where 360-degree mark is given instead of the CME position data imply the halo-type CME which are initiated usually by flares in the center of the Sun's disk and represent solar material propagating approximately toward (or away from) the observer.

In case the identification of one or another CME with a given flare does not seem to be reliable and if the information about the CME velocity or the parameters of CME as a whole is conflicting, the symbol "?" appears in the end of a line.

DESCRIPTION OF PART 3

Part 3 includes the list and the characteristics of the active regions in which the flares identified as () or () sources of SPE's given in Part 1 occurred. Most of the data on active regions presented in Part 3 have been taken from Solar Data Bulletin of the Main Astronomical Observatory of the USSR [19] and from Solar Geophysical Data, Boulder, USA [4]. Some information is from Quarterly Bulletin on Solar Activity, Tokyo [23].

Presented from the left to the right in the heading line are:

- HR plage number (HR) and, starting from October, 1982, the NOAA plage number (AR) [4];
- Meudon numbers of the associated active regions (M) in which the first four digits mean the Carrington rotation (for ex-

- ample, M1572-40 means the 40-th active region in Carrington rotation 1572);
- the heliolatitude of the active region center; the data of the central meridian passage (CMP) in tenths of a day (12.5 Apr. means 1200 UT on April 12);
- Mt. Wilson number of the sunspot group or groups (MW) which produced the flare. If there are several groups, the first listed is the largest group or the group where the "center of gravity" of the flare is located; then (with two or three last figures) the numbers of the groups which have persisted no less than 7 days and contributed to the flares;
- the respective number of active region (AR) from the NOAA data and (after September, 1982) the Big Bear number of active region (BR) with the order of numbers continuing the HR number order [4];
- the number of sunspot groups from [19].

The second line of the heading indicates in the same or-

- the date and onset time of the flare associated with the SPE;
- the Carrington longitude (in the middle of the line immediately under the CMP data). If numerous proton events occurred in the active region, the respective flares (the dates and the onsets) are indicated both to the right and to the left from the Carrington longitude.

The lines below the heading present the following data which characterize the active region:

- age of the active region in the Sun's rotations;
- brief description of the active region evolution including the HR or AR number during the previous rotation, the characteristic of the evolution and the magnetic configuration of the sunspot group (or groups). Also presented is the total number of flares. The flare distribution by importance in H_c- brightness neglected and in soft X-ray is indicated in parenthesis, for example, $45(2_4 + 1_7; X_2 + M_7 + C_{15})$ means that out of 45 flares 4 were of importance 2, 7 were of importance 1, 2 were of X-ray class X, 7 were of X-ray class M. and 15 were of X-ray class C.

After that, the numerical characteristics of the active

region and of the sunspot groups are presented on

- (a) the CMP day;
- (b) the days of the SPE-producing flares;
- (c) the date of the maximum (one or two) development of the active region by its area if it is not coincident with the days of points (a) and (b).

The characteristics are presented for all the sunspot groups listed in the first line of the heading and are united at left by square brackets for each day. The following abbreviations are used:

- Ca 6100/3.5 means that the area of the calcium flocculus was 6100 millionths of the visible hemisphere and its intensity was 3.5 (on 1-5 scale); the data are from [4];
- 6400/320/19 means that the given group consists of 19 sunspots whose total area is 6400 millionths of the visible hemisphere, the area of the largest spot is 320, and the characteristics of all the events are taken from [19];
- -the sunspot group classification according to McIntosh [4];

The magnetic classification of sunspot groups (the data from [4]) is as follows:

- A a unipolar spot;
- B a bipolar sunspot group (Bp, Bf denote that the leading or tailing spot, respectively, is more developed);
- BY a bipolar group where one or several sunspots distort the typical pattern of polarity distributions;
 - Y a magnetically complicated sunspot group with mixed polarity;
 - D a magnetically complicated group with sunspots of different polarities in the same penumbra.

Часть 1

PART 1

103	1980 SHBAPL	11	66		000
MET	NP >5	0657	9 838	3,2 CYT	2,0E+1
	ΠP >15	9694	0838	14 4	7,0E-2
IMP8	WP 13,7-25,2	96	10	>2 € YT	3,3E-2
-"	TIP 20-40	96	10	2,5 CYT	4,0E-3
	NP 40-80	06	07	1 CYT	8,0E-5

ИСТОЧНИК: ● ВСПЫШКА 10Д0459 S11 E09 2N HR16577 ▲ SC 0758; 13Д0510

104	1980 ЯНВАРЬ 20	5	00		999
MET	ΠP >5	99	0503	3 СУТ	7,1
"	ΠP >15	00	0503	'2 CYT	0,5
"	ΠP >25	00	0503	19 4	4,0E-2
~ " ~	BP >30	99	0503	17 4	3,0E-2
IMP8	IIP 13,7-25,2	00	06		3,0E-2
"	TIP 20-40	00	06		6,0E-3
_"	IIP 40-80	00	9 3	3 CYT	3,0E-4

ИСТОЧНИК: ● ВСТЫШКА 25Д1903 S19 W50 2B HR16604 ■ SC 28Д1943

		~~~~~~~~		
105	1980 ЯНВАРЪ З	1	11	000
MET	∏P >5	1115	1210	15
,	IIP >15	1115	1210	6,0E-1
_"	IIP >25	1115	1210	8,0E-2
IMP8	MP 13,7-25,2	10	12	3,0E-2
<b></b> "	TP 20-40	10	15	2,2E-3
	TP 40-80	10	15	3,0E-4

ИСТОЧНИК:  $\Box$  ОБЛАСТЬ HR16604 2,5 СУТ 3A W-ЛИМБОМ ВСПЛЕСК II ТИПА 0933 БЕЗ  $H_{cc}$  -ВСПЫШКИ

106	1980 DEB	РАЉ 06	12		010
MET	πP >5	5/12350/1214	(B-10)/1358/1900	4 CYT	8/31/36
-"-	#P >15	1214	1358/1900	22 4	6.8/6.9
_*_	NF >25	1214	1358/1900	20 4	0,9/1,2
"	ΠP >30	1214	1358/1900	17 4	0,7/0,8
<i>"</i>	TIP >40	1214	1358/1900	12 4	0,5/0,6
	∏F >90	1214	1358	12 4	0,02
IMP8	TF 13.7-2	5.2	(7 <b>Д0</b> 2	>1. CYT	>0,1
_"-	IIF 20-40	-,	(7Д06	>1 CYT	>1,5E-2
<b>"</b>	TP 40-80		(7Д06	>1 CYT	>2,3E-3
PMOM	TITUS .	13	14/19	24 4	0,5/07

ИСТОЧНИК: O ВСПЫШКА 3Д1318 S15 E15 1B HR16631 5Д1727 S17 W09 1B HR16631

△ SC 0321

107	1980 ФЕВРАЛЬ	98	10		999
MET	ΠF >5	1016	1155	1,7 CYT	7,9
	TP )15 TP )25	1016 1016	1155 1155	10 4 6 4	6,0E-1 6,0E-2
	ΠP >30	1016	1155	6 4	5,0E-2
IMP8	TP 13,7-25,2	10	(21	)2 CYT	>1,2E-2
	IIP 20-40	(21	(21	2 CYT	>2,0E-3
	TP 40-80	(21	(21	2 CYT	>2,5E-4

## ИСТОЧНИК: ВСПЫШКА 0905 N13 W79 1B HR16627

108	1980 АПРЕЖ	94	16		110
MET	ΠP >5	(3)2000/1643	1914	3,6 CYT	33
~~~~	ΠP >15	1643	1914	2,2 CYT	12
-"-	ΠP >25	1643	1914	1,8 CYT	2 .
~-	ΠP >30	1643	1914	1,6 CYT	1,7
	ΠP >40	1643	1914	1,4 CYT	1,1
-" '	TIP >90	1643	1914	12 4	2.6E-1
IMPB	NP 13,7-25,2	16	(24	>6 CYT)3,5E-1
" :	NP 20-40	16	(24	6 CYT)7,5E-2
~	IIP 40-80	16	(24	6 CYT)1.6E-2
~~	3A 1-5	(14	>16	4 CYT	1.0
PHOM	11718)	(00	16-24	>2 CYT	1.0

NCTOYHNK: •

- BCITHINKA 1454 N27 W35 1N HR16740
- O ВСПЫШКА 3Д0627 N30 W16 2N HR16740
- ▲ SC 6Д1059

109	1980 ИЮНЬ 07		03		00E@3
MET	∏P >15#	9235	9594	18 Y	3,2
	ΠP >25*	0235	0504	17 4	2,3E-1
	ΠP >30×	0235	0504		2,0E-1
	TP)40*	0235	0504	84	4.0E-2
IMP8	MP 13,7-25,2	< 03	07	>1 CYT	1.5E-2
	TP 20-40	(03	96-09	1 CYT	2.5E-3
	ΠΡ 40-8 0	(03	96	1 CYT	3.5E-4
	ЭЛ 1-5	02	>04	1 CYT	>2,5
PHOM	TTE	04	05	64	9.6

ИСТОЧНИК: ● ВСПИШКА 0311 N12 U74 1B HR16886 ● ВСПИШКА 0116 N13 U72 1B HR16886

* ВОЗНОЖЕЙ ВКЛАД ЭЛЕКТРОНОВ С E >2-16 МЭВ

>1.4 CYT	>23
)1,3 CYT	3.2
1.2 CYT	3.0E-1
1 CYT	2.7E-1

	NP >40* NP 13,7-25,2	0132 02	0730 (18-22)/23Д(06-09)	20 4 >6 CYT	6,0E-2 8,E-3/1,6E-2
~~~	NP 20-40	02	(18-22)/231(03-05)	6 CYT	2E-3/3E-3
"	NP 40-80	02	18	9 CAL	7.0E-4
"	ЭЛ 1−5	(10	<10	>4,5 CYT	)1

источник:

0

ВСПЫШКА 0121 N19 W90 1B HR16898 ВСПЫШКА 0003 S12 E14 2N NR16918

♠. SC 24Д0248; 26Д0129

* ВОЗМОЖЕН ВКЛАД ЭЛЕКТРОНОВ C E >2-10 МЭВ

111	1980 ИЮНЬ 29		(12		C0300
MET	ΠΡ >5*		(1209	int that had had nive time this term over the rise from their state total rises of	1.47E+1
"-	ΠP >15*		1319		9,3E-1
"	ΠP >25*		1319		1,6E-1
	ΠP >30*		1319		9.0E-2
"	11P >40*		1319		7.0E-2
IMP8	NP 13,7-25,2	(20	(20	)1,5 CYT	7.0E-3
"	TP 20-40	(20	(20	2 CYT	1.2E-3
<b>~~~</b>	TP 40-80	(20	(20	1 CYT	1.6E-4
	3A 1-5	>10	(23	>1 CYT	>1.7E-1

ИСТОЧНИК: В ВСПЫШКА 1035 S27 W90 1F HR16923

* ВОЗМОЖЕН ВКЛАД ЭЛЕКТРОНОВ С Е >2-10 МЭВ

112	1980 NIOJIL 06		05	·		000
MET	ΠP >5	0402	1052	1,3 CYT	3,3	
-~-	ΠP >15	0452	1001	22 4	0,55	
-"	ΠP >25	0452	1001	13 4	0,08	
·~~	NF >30	0452	1001	<b>&gt;9 4</b> \	0,05	
.~	TIP >40	0452	1001	5 4	0.04	
MP8	NP 13,7-25,2	(05	10	<b>—</b>	4,0E-2	
.″-	TP 20-40	(05	10	2 CYT	1.2E-2	
<b>"</b> -	TP 40-80	(05	10	2 CYT	2,0E-3	
· <b>~</b> -	ЭЛ 1-5	(05	12	1 CYT	1,3E-1	
	источник:	ВСПЫШКА	5Д(2237 N28 W	29 1B HR16955		
13	1980 ИЮЛЬ 17	ne mer este selv enn den van mer ete le	16	44 MY 149 AM	an dala mala, mata salah	220
1ET	TIP >5	(1852	18Д2031	9 СУТ	1,0E+3	
-"-	11P >15	1610	18Д1929	5,6 CYT	8,7E+1	
-"	ĭIP >25	1610	18Д1929	3,5 CYT	4,3	
*	mr. 170	4448	4004000	m m mum		

	,				
MET	ΠP >5	(1852	18Д2031	9 СУТ	1,0E+3
<b>"-</b>	NP >15	1610	18Д1929	5,6 CYT	8,7E+1
-"-	11P >25	1610	18Д1929	3,5 CYT	4,3
	TP >30	1610	18Д1929	2,7 CYT	4,2
_~_	NP >40	1610	1811929	2,4 CYT	0.5
IMP8	TF 13,7-25,2	15	18Д02/18Д(16-20)	>6 CYT	0,4/4,5
"	TP 20-40	15	18Д02/18Д19	>6 CYT	8,0E-2/7,0E-1
"	TIF 40-80	15	18702/18719	3 CYT	3,0E-3/1,2E-2
~ <b>~</b> ~	ЭЛ 1~5		18111	9 CYT	2.0E+1
PNOM	TITIL	21	18Д16	4,3 CYT	3,4/

ИСТОЧНИК: О ВСПЫШКА 0536 S11 E06 2N HR16978

Ф прохождение активной области нк16978

▲ SC 1936; 18Д1926

	1980 ABFYCT 0		18		900
MET	ĭIP >15	1748	7Д0358	1,6 CYT	0,9
	IIP >25	1748	7Д0215	>1,1 CYT	0,19
~~~	NP >30	1748	7Д0215	>1.0 CYT	0.16
	IIP >40	1748	2252	23 4	0.1
<i>"</i>	IIP)90	1748	2110	14 4	0.01
IMP8	NP 13.7-25.2	18	71107)10 CYT	8.0E-2
	TP 20-40	18	71106)10 CYT	2,0E-2
 "	IIP)15 IIP)25 IIP)30 IIP)40 IIP)40 IIP)90 IIP 13,7-25,2 IIP 20-40 IIP 40-80	18	7405	10 CYT	4,0E-3
	источник в				
115	1980 OKT95Pb	15	⊘ B		110
	IIP >5 Ø8		2127/108024	\1A CVT	94/43
	ΠP >15	70/1/41/11	2123/18Д0024 2123/18Д0123	710 U/1	74/43
	IP)15 IP)25 IP)26 IP)40 IP 13,7-25,2 IP 20-40 IP 40-80 3J 1-5 IIII	でひと ひ	Z1Z3/18AV1Z3	74 671	20/3,4
	HF 725	9825	2123/18Д0123	4 CYT	2/0,24
	IIP) 30	0825	2123/18Д0123	4 CYT	1,7/0,21
	11P)40	9 825	2123	1,5 CYT	0,5
IMP8	NP 13,7-25,2	98	20/18Д01)10 CYT	0,6/0,3
"	IIP 20-40	98	20/18Д01	10 CYT	0,1/4,0E-2
-~-	TP 40-80	98	20/18Д01	6 CYT	1,6E-2/2E-
	ЭЛ 1-5	(98	>19	10 CYT	>3,3
PHOM	nnw .	98	21/18101	7.8 CYT	1/0,9
	источник: •	ВСПЫШКА 1 ВСПЫШКА 0	4Д0541 S07 W06 450 N21 E55 3N 4; 22Д1014	38 HR17188	
*** *** *** ***	источник: • Ø	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011	4Д0541 S07 W06 450 N21 E55 3N 4; 22Д1014	39 HR17188 HR17204	
116	источник: • Ø Å	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011	4Д0541 S07 W06 450 N21 E55 3N 4; 22Д1014	36 HR17188 HR17204	900
116	источник: • Ø Å	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011	4Д0541 S07 W06 450 N21 E55 3N 4; 22Д1014	36 HR17188 HR17204	900
116	источник: • Ø Å	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011	4Д0541 S07 W06 450 N21 E55 3N 4; 22Д1014	36 HR17188 HR17204	7,8 0,22
116	источник: • Ø Å	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011	4Д0541 S07 W06 450 N21 E55 3N 4; 22Д1014	36 HR17188 HR17204	900
116	ИСТОЧНИК:	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011	4Д0541 S07 W06 450 N21 E55 3N 4; 22Д1014 	36 HR17188 HR17204	7,8 0,22 0,05 0,02
116	ИСТОЧНИК:	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011	4Д0541 S07 W06 450 N21 E55 3N 4; 22Д1014 	36 HR17188 HR17204	7,8 0,22 0,05
116	ИСТОЧНИК:	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011	4Д0541 S07 W06 450 N21 E55 3N 4; 22Д1014 	36 HR17188 HR17204	7,8 0,22 0,05 0,02
116	ИСТОЧНИК:	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011	4Д0541 S07 W06 450 N21 E55 3N 4; 22Д1014 	36 HR17188 HR17204	7,8 0,22 0,05 0,02 2,0E-2
116	ИСТОЧНИК:	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011	4Д0541 S07 W06 450 N21 E55 3N 4; 22Д1014 	36 HR17188 HR17204	7,8 9,22 9,05 9,02 2,0E-2 4,0E-3
116	ИСТОЧНИК:	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011	4Д0541 S07 W06 450 N21 E55 3N 4; 22Д1014	36 HR17188 HR17204	7,8 0,22 0,05 0,02 2,0E-2 4,0E-3 4,0E-4
116 MET IMP8	ИСТОЧНИК:	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011 1 (1745 (1745 (1745 (1745 19 19 (18 ВСПЫШКА 0 ВСПЫШКА 1 (8C 14Д115	40541 S07 W06 450 N21 E55 3N 4, 22µ1014 19 1843 1934 1934 1934 20-24 20 20 20 20 900 N12 W68 2B 729 S11 W69 2B	3B HR17188 HR17204 	7,8 0,22 0,05 0,02 2,0E-2 4,0E-3 4,0E-4 1,6E-1
116 MET IMPB	ИСТОЧНИК: 20	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011 1 (1745 (1745 (1745 19 19 19 (18 ВСПЫШКА 0 ВСПЫШКА 1 (SC 14Д115	40541 S07 W06 450 N21 E55 3N 4, 22A1014 19 1843 1934 1934 1934 20-24 20 20 20 20 20 900 N12 W68 2B 729 S11 W69 2B 3	3B HR17188 HR17204	7,8 0,22 0,05 0,02 2,0E-2 4,0E-3 4,0E-4 1,6E-1
116 MET -""1 IMPB -""""-	ИСТОЧНИК: 1980 НОЯВРЬ 1 ПР >5 ПР >15 ПР >25 ПР >40 ПР 13,7-25,2 ПР 20-40 ПР 40-80 ЗЛ 1-5 ИСТОЧНИК: 1980 НОЯВРЬ 1 ПР >5	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011 1 (1745 (1745 (1745 19 19 19 (18 ВСПЫШКА 0 ВСПЫШКА 1 (SC 14Д115	40541 S07 W06 450 N21 E55 3N 4, 22A1014 19 1843 1934 1934 1934 20-24 20 20 20 20 20 900 N12 W68 2B 729 S11 W69 2B 3	3B HR17188 HR17204	7,8 0,22 0,05 0,02 2,0E-2 4,0E-3 4,0E-4 1,6E-1
116 MET 117 MET	ИСТОЧНИК: 1980 НОЯВРЬ 1 ПР >5 ПР >15 ПР >25 ПР >40 ПР 13,7-25,2 ПР 20-40 ПР 40-80 ЭЛ 1-5 ИСТОЧНИК: 1980 НОЯВРЬ 1 ПР >5 ПР >5 ПР >5 ПР >5 ПР >5	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011 1 (1745 (1745 (1745 19 19 19 (18 ВСПЫШКА 0 ВСПЫШКА 1 (SC 14Д115	40541 S07 W06 450 N21 E55 3N 4, 22A1014 19 1843 1934 1934 1934 20-24 20 20 20 20 20 900 N12 W68 2B 729 S11 W69 2B 3	3B HR17188 HR17204	7,8 0,22 0,05 0,02 2,0E-2 4,0E-3 4,0E-4 1,6E-1
116 MET -"- -"- IMPB -"- -"-	ИСТОЧНИК: 20	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011 1 (1745 (1745 (1745 (1745 19 19 19 (18 ВСПЫШКА 0 ВСПЫШКА 1 /8C 14Д115	40541 S07 W06 450 N21 E55 3N 4, 22A1014 19 1843 1934 1934 1934 20-24 20 20 20 20 700 N12 W68 2B 729 S11 W69 2B 3	3B HR17188 HR17204	7,8 0,22 0,05 0,02 2,0E-2 4,0E-3 4,0E-4 1,6E-1
116 MET -"- -"- IMPB -"- -"-	ИСТОЧНИК: 20	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011 1 (1745 (1745 (1745 (1745 19 19 19 (18 ВСПЫШКА 0 ВСПЫШКА 1 /8C 14Д115	40541 S07 W06 450 N21 E55 3N 4, 22A1014 19 1843 1934 1934 1934 20-24 20 20 20 20 700 N12 W68 2B 729 S11 W69 2B 3	3B HR17188 HR17204	7,8 0,22 0,05 0,02 2,0E-2 4,0E-3 4,0E-4 1,6E-1
116 MET -"- -"- IMPB -"- -"-	ИСТОЧНИК: 20	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011 1 (1745 (1745 (1745 (1745 19 19 19 (18 ВСПЫШКА 0 ВСПЫШКА 1 /8C 14Д115	40541 S07 W06 450 N21 E55 3N 4, 22 1014 19 1843 1934 1934 20-24 20 20 20 20 700 N12 W68 2B 729 S11 W69 2B 3 15 15 10451 15 10451 15 10451 15 10458	3B HR17188 HR17204	7,8 0,22 0,05 0,02 2,0E-2 4,0E-3 4,0E-4 1,6E-1
116 MET -"- -"- IMPB -"- -"-	ИСТОЧНИК: 20	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011 1 (1745 (1745 (1745 (1745 19 19 19 (18 ВСПЫШКА 0 ВСПЫШКА 1 /8C 14Д115	40541 S07 W06 450 N21 E55 3N 4, 22 1014 19 1843 1934 1934 20-24 20 20 20 20 700 N12 W68 2B 729 S11 W69 2B 3 15 15 10451 15 10451 15 10451 15 10458	3B HR17188 HR17204	7,8 0,22 0,05 0,02 2,0E-2 4,0E-3 4,0E-4 1,6E-1
116 MET -"- -"- IMPB -"- -"-	ИСТОЧНИК: 1980 НОЯВРЬ 1 ПР >5 ПР >15 ПР >25 ПР >40 ПР 13,7-25,2 ПР 20-40 ПР 40-80 ЭЛ 1-5 ИСТОЧНИК: 1980 НОЯВРЬ 1 ПР >5 ПР >5 ПР >5 ПР >5 ПР >5	ВСПЫШКА 1 ВСПЫШКА 0 SC 19Д011 1 (1745 (1745 (1745 (1745 19 19 19 (18 ВСПЫШКА 0 ВСПЫШКА 1 /8C 14Д115	40541 S07 W06 450 N21 E55 3N 4, 22A1014 19 1843 1934 1934 1934 20-24 20 20 20 20 700 N12 W68 2B 729 S11 W69 2B 3	3B HR17188 HR17204	7,8 0,22 0,05 0,02 2,0E-2 4,0E-3 4,0E-4 1,6E-1

7-2

IMP8 ЭЛ 1-5 (24 15Д05 9 СУТ 0,6 РИОМ ППШ 23 15Д06 3 СУТ 0,5

ИСТОЧНИК: • ВЫСОКАЯ ВСПЫШЕЧНАЯ АКТИВНОСТЬ ОБЛАСТИ HR17255

Ø BCINIEKA 1539 S16 W39 1B HR17255

@ BCNHUKA 2346 S14 W47 2N HR17255

-							
	118	1980 НОЯБРЬ 2	3	21	and the state and and and and and and the thic thic field fine and the thic	010	•
	MET	∏P >5	2037	24Д0147)5,2 CYT	15	•
		ΠP >15	2037	2440147	1,3 CYT	2,6	
	-"-	MP >25	2037	24Д0147	24 4	0,37	
		TIP >30	2037	2440147	23 4	0.31	
	~ "–	∏P >40	2037	2440147	22 4	0,11	
	"	NP >90	2037	2440004	>10 4	0,03	
	IMP8	NP 13,7-25,2	20	24103	>5 CYT	2.5E-1	
	-"-	IIP 20-40	20	24Д03)5 CYT	7,0E-2	
		NP 40-80	20	24103	>5 CYT	1,3E-2	
	"	ЭЛ 1-5	20	24103	2 CYT	1,3E-1	
	PHOM	TTTM	22	24402	2 CYT	0,5	

ИСТОЧНИК: ● ВСПЫШКА 1751 N11 W20 1B HR17281 ■ SC 24X2257; 26X0422

119	1980 НОЯБРЬ 2	9 '	08	• ,	000
MET	¶P >5		(30Д1500	6,4 CYT	>5
~	RP >15		(ЗОД1500	(3,6 CYT	>0.03
IMP8	NP 13,7-25,2	08	30A(03-05)	6 CYT	5,5E-2
	NP 20-40	0 8	30Д04	6 CYT	7.0E-3
	NP 40-80	(15	30Д04	2,5 CYT	3,0E-4

ИСТОЧНИК: О ПРОХОЖДЕНИЕ АКТИВНОЙ ОБЛАСТИ HR17304
О ВСПЫШКА 28Д0925 S13 E63 1N HR17304

120	1981 MAPT 07		0 8		999
MET	IIP >5	0759	1418	-	3
-"-	NP >15	0 759	1326		. 0,44
	IIP >25	0759	1326		0.12
	11F >30	0759	1326		0,10
	NP >40	0759	1326		0.08
	11₽+>9 0	0759	1326	1	0.009
IMP8	WP 13,7-25,2	(08) 0 9/(17-1 9))2 CYT	>0,05/0,05
	TP 20-40	(08)	17-19	7 CYT	1,3E-2
⁴	NP 40-80	(08	15-17	7 CYT	2,8E-3
11F08	ΠP >100	Ø 7	11-14		2,5E-2
~ ~ -	TIP >500	(07	11-14		1,9E-2

ИСТОЧНИК: • ВСПЫШКА (0613 S22 W79 SN HR17481

MET	HF >40 HP >90 HP 13,7-25,2 HP 13-40 HP 40-80 HP >100 HP >500	2207 2207 2207	22 26,0107 26,00107 26,0014 26,00014 26,00014 (26,006 (26,006 (26,006 26,006-03) 26,006-02))4 CYT 4 CYT 4 CYT 10 4	2,9 0,66 0,16 0,14 0,08 0,02)3,0E-2)9,0E-3)3,0E-3
MET	NP >5 NP >15 NP >25 NP >30 NP >40 NP >90 NP 13,7-25,2 NP 20-40 NP 40-80 NP >100 NP >500	2207 2207 2207	26Д0014)4 CYT 4 CYT 4 CYT	0,66 0,16 0,14 0,08 0,02)3,0E-2)9,0E-3)3,0E-3
IMP8	IIP >25 IIP >30 IIP >30 IIP >40 IIP >90 IIP 13,7-25,2 IIP 20-40 IIP 40-80 IIP >500	2207	26Д0014)4 CYT 4 CYT 4 CYT	0,66 0,16 0,14 0,08 0,02)3,0E-2)9,0E-3)3,0E-3
IMP8	IIP >25 IIP >30 IIP >30 IIP >40 IIP >90 IIP 13,7-25,2 IIP 20-40 IIP 40-80 IIP >500	2207	26Д0014)4 CYT 4 CYT 4 CYT	0,16 0,14 0,08 0,02)3,0E-2)9,0E-3)3,0E-3
IMP8	HF >40 HP >90 HP 13,7-25,2 HP 13-40 HP 40-80 HP >100 HP >500	2207 2207 2207 2207 (26114 (26106 (26106 24 23	24110014)4 CYT 4 CYT 4 CYT	0,14 0,08 0,02)3,0E-2)9,0E-3)3,0E-3
IMP8	HF >40 HP >90 HP 13,7-25,2 HP 13-40 HP 40-80 HP >100 HP >500	2207 2207 (26Д14 (26Д06 (26Д06 24 23	26,00014 26,00014 (26,006 (26,006 (26,006) 26,000003))4 CYT 4 CYT 4 CYT	0,08 0,02)3,0E-2)9,0E-3)3,0E-3
		2207 (26Д14 (26Д06 (26Д06 224 23	26Д0014 (26Д06 (26Д06 (26Д06 26Д(00-03))4 CYT 4 CYT 4 CYT	0,02 >3,0E-2 >9,0E-3 >3,0E-3
		(26Д14 (26Д06 (26Д06 24 23	(26,006 (26,006 (26,006 (26,006) (26,006))4 CYT 4 CYT 4 CYT)3,0E-2)9,0E-3)3,0E-3
		(26Д06 (26Д06 24 23	(26Д06 (26Д06 26Д(00-03)	4 CYT	>9,0E-3 >3,0E-3
		(26 Д06 24 23	(26Д06 26Д(00-03)	4 CYT)3,0E-3
		24 23	26A(00-03)	10 4	
		23	2411(00-03)		1,5E-2
		20		10 U	9,0E-3
	MULTURNING				7,05-3
	NC LO HANGE	BCIIIIIKA	2039 N09 W87 2B	HR17528	
	1981 MAPT 30		00	à less this thir file rais over mu less mas east san que sarquan	[1]14
MET	ΠΡ >5 ΠΡ >15 `	0053 0053			>53
~	NP >15 `	0053	>1111	-	>2,1
 "	NP >25	-	>1111		>0,22
	NC 174	-	>1111		>0,19
IMPB	IIP 13,7-25,2 IIP 20-40	99	>20	>2 CYT)2,2E-1
~	IIP 20-40	00)20 (20	>2 CYT)1,5E-2
	TF 40~80		(20	2 CYT)3,6E-4
	TITU	07	(20 13	1,1 CYT	1,1
	источник:	ВСПЫШКА	0017 N13 W72 1N	HR17535	
123	1981 АПРЕЛЬ 01	L	0 2 ·	it turi alia alai wan ara iga wan alia ma alia ma alia alia ara alia alia an mili.	010
MET	ΠF >5	0229 0229 0229 0229 0229	1104 1104 1104 1104 1104 0413 (24)2,2 CYT	18
-"-	ΠP >15	0229	1104	>2.2 CYT	18 3,4
* _	IIP >25	0229	1104	2 2 0 0 7	A 07
	ΠP >30	0229	1104	2,2 CYT	0.90
*	NF >40	0229	1104	1,7 CYT	0,76 0,90 0,52 0,19
	HP >90	0229	0413	0,9 CYT	0,19
IMPB	NP 13.7-25.2	02	(24)2 CYT	`}1,5E-1
	NP)40 NP)90 NP 13,7-25,2 NP 20-40		(24	1,7 C71 0,9 C7T)2 C7T)2 C7T)2 C7T)4,5E-2
*	ΠP 40-80	02	(24 47)2 CYT	>9,0E-3
	RP >100	04	97	î CYT	0,1
	IIP >100	-	A "3	(1 CYT	0,2
	IIP >130	-	07 07	(1 CYT	0,07
		07)11/2 A 10	1,7 CYT	0,5/0,7
	Tinu	₹/	* * * * * * * * * * * * * * * * * * * *		
PHOM			0102 S43 W52 3B	HR17539	
РИОМ 124	ИСТОЧНИК: • 1981 АПРЕЛЬ 03	ВСПЫШКА	0102 S43 W52 3B	y alain dan alai san ann ann ann aith san lean ara ain, ain ain ain ain	116
PHOM 124 MET	ИСТОЧНИК: • 1981 АПРЕЛЬ 0 3	ВСПЫШКА 3	0102 S43 W52 3B)16/)17
PHOM 124 MET	ИСТОЧНИК: • 1981 АПРЕЛЬ 03	ВСПЫШКА 3 /4Д06	0102 S43 W52 3B)16/)17
PHOM 124 MET	ИСТОЧНИК: • 1981 АПРЕЛЬ 03	ВСПЫШКА 3 /4Д06	13 (19/(4)2030 (19/(4)2030)4,3 CYT)2,8 CYT)16/)17)4,8/)6,6
PHOM 124 MET	ИСТОЧНИК: • 1981 АПРЕЛЬ 03	ВСПЫШКА 3 /4Д06	13 (19/(4)2030 (19/(4)2030 18/(4)2030)4,3 CYT)2,8 CYT)2,1 CYT)16/)17)4,8/)6,6 0,8/)2,2
PHOM 124 MET	ИСТОЧНИК: • 1981 АПРЕЛЬ 03	ВСПЫШКА 3 /4Д06	13 (19/(4)2030 (19/(4)2030 18/(4)2030)4,3 CYT)2,8 CYT)2,1 CYT)2,0 CYT)16/)17)4,8/)6,6 0,8/)2,2 /1,6
PHOM 124 MET	ИСТОЧНИК: • 1981 АПРЕЛЬ 03	ВСПЫШКА 3 /4Д06	13 (19/(4,12030 (19/(4,12030 18/(4,12030 18/(4,12030 18/(4,12030))4,3 CYT)2,8 CYT)2,1 CYT)2,0 CYT)16/)17)4,8/)6,6 0,8/)2,2 /1,6 0,69/1,1
PHOM 124 MET	ИСТОЧНИК: • 1981 АПРЕЛЬ 0 3	ВСПЫШКА 3 /4Д06	13 (19/(4)2030 (19/(4)2030 18/(4)2030)4,3 CYT)2,8 CYT)2,1 CYT)4,8/)6,6 0,8/)2,2 /1,6

		,	- 54 -		
IMP8	TP 40-80	(4)07	(4)(15)	>6 CYT	\2 AE2
		13 (14-151/48(00-00)	70 671)2,0E-2 0,04/0,35
	NP >100	ARAT	14-15)/4Д(08-09) 4Д10-13 4Д10-13	<u>.</u> .	0,5
-"-	TIP >150	4H07	4H1013		0,2
	IIP >250	(4 <u>Д</u> 07	4A10-13		0.06
PHOM	nnm	13	>16/4 <u>Д</u> 06	2 CYT	•
1 MOIT	17111111	13	71077400	2 6/1	>0,6/0,75
	источник.	ВСПЛІВКА	0905 841 W83 1N	UD17579	
			4Д0502 S44 W87		•
125	1981 ATTEJE 10		17		121
MET	11	~	2040	>3,2 CYT	94
-"-		_ '	2040)3,2 C/T)3,2 C/T)2,5 C/T)2,3 C/T)2,2 C/T	27
	11P >25	1748	2040 2040 2040 1856 1856 1856 24 24 22 22-23 1830 1830	>2.5 CYT	8,3
	∏P >30	1748	2040	>2.3 CYT	7,8
~~-	∏P >40	1748	1856)2.2 CYT	6,5
"	TP >90	1748	1856)2,2 C/T)1,5 C/T 15 4)5 C/T)5 C/T)5 C/T 2,3 C/T	2,3
	IIP >600	1748	1856	15 Y	0.04
IMPB	IIP 13.7~25.2	17	24)5 CYT	2,5
	TP 20-40	17	24)5 CYT	0.8
	TP 40-80	17	22)5 CYT	0,25
11608	TIP 1100	17	22-23	2 7 CVT	1,55
ВАЛ	∏P >120	-	1930	11 CYT	1,4
	NP >150	-	1970)1 CYT)1 CYT	0,9
	TD 1200	-	1070	71 U/1	
	TP >200 TP >300 TP >1 FB TTW	-	1830)1 U)1	0,4
LIM	11 7300 11 11 PB	1700	1000	71 U/1	0,1
DIADM	414 17 10	1700	1000 1 1	3 1	1% INV
PYION	HIII	(18	24/11Д16	3,3 671	2,1/1,9
	NC I UMMINIT	BUINNINA	1632 N07 W36 2B 1059 N11 E53 1B	HR1/568	
			724; 11 <u>B</u> 1339; 12		
126	1981 АПРЕЛЬ 15		16		910
IMPA	BP 13.7-25.2	(18	16710	YO CAL	a 25
	TP 20-40	(18	16810)9 CYT	9 94
*	TP 40-80	(24	16010	SH CYT	0,002
PHOM	ппш	16	1688	2 S CYT	Δ.0
1 11011	ПР 13,7-25,2 ПР 20-40 ПР 40-80 ППШ ИСТОЧНИК: Ø	RCHAIIKA	1402330 N13 E73	1N L801750A	v, o
	Δ	SC 1881	503	714 10(1)010	
				MINE FROM SAID SAIDS (AND AND FASTE LAND SAID SAID SAID SAID SAID SAID SAID	
127	1981 АПРЕЛЬ 24				220
MET	TIP >5	1439 1439 1439 1439 1439	1949 1949 1949	· -	460
	NP >5 NP >15	1439	1949	VA 3 CYT	94
"	₩ /15 ₩ >25	1439	1949	>4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT	26
~	IIP >30	1470	1040	74,3 C/7	22
	NP >40	1437	1040	>4,3 CYT	14
	TIP >90	1470	1747 1749 1949 1804 1804 22 22	7473 U/1	
	11P >600	1439 1439	1004)44	2,1
TMPO	110 17 725 2	1737	1064 33	47 7 \A E DVT	9,04 9
71.1L.0	III JOY/TEJYE	12	24	74,3 U/1	
-	11F 2 V~4V	1.4	~~ ~~	74,5 U/1	2,5
****	117 4V~8V	12	(22)4,5 CYT	>0,5
HPU8	nr >100	14	18-23	2,5 CYT	1,45
HUNT			・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14 E CYT	4 E 10 7 10 0
	TITE	14	24/20A07/2/A00	74,5 671	4,5/2,7/2,8
	NP >600 NP 13,7-25,2 NP 20-40 NP 40-80 NP >100				4,3/2,//2,8
	источник:	ВСПЫШКА	1344 N18 W50 2B	HR17590	4,3/2,7/2,8
	ИСТОЧНИК: ● Ø	ВСПЫШКА ВСПЫШКА		HR17590 4 2N HR17590	4,3/2,//2,0

BCTINUKA 2740816 N17 W90 1N HR17590

SC 2640813

128	1981 АПРЕЛЬ 2	В	. 22		220
MET	ΠΡ > 5	2208	29д0229)1,3 CYT	190
	NP >15	2208	29月0229	>1,3 CYT	45
	NP >25	2208	29Д0229	>1 3 CYT	10
"	∏P >30	2208	29Д0229	1,3 CYT	9,3
"	IIP)40.	2118	2910229	1,2 CYT	4,1
-"-	TIP >90	2118	2910229	0,75 CYT	0,2
_"-	TP >600	2118	29Д0045		0,006
IMP8	TP 13.7-25.2	22	29Д03	>1 CYT	3
	NP 20-40	22	29Д0З	1 CYT	1
 ~	TP 40-80	22	29Д03	>1 CYT	0,15
TIPO8	∏P >100	22	29Д(00-01)		0,18
PHOM	TITU	(20	29Д09	>1,4 CYT	2,9

ИСТОЧНИК: № ВСПЫШКА (2205 N16 W90 SB HR17590

129	1981 АПРЕЛЬ 30)	04		220
MET	IIP >5	0459	1417)4,2 CYT	2,82E+2
	ΠP >15	0459	1417)4,2 CYT	7,4E+1
	∏P >25	0408	1417	>4,2 CYT	2,2E+1
*	TF >30	9498	1417	4,2 CYT	1,8E+1
	ΠP >40	0408	1417	4,2 CYT	1,5E+1
	11P >90	0408	1417	3 CYT	4,3
page # 1000	IIP >600	0448	1417		4,7E-2
IMPB	NP 13.7-25.2	(5	12	>5 CYT	>3
	TP 20-40	(5	12	>5 CYT	9,0E-1
_~	IIP 40-80	(5	12	>5 CYT	2,5E-1
npos	∏P >100	96	12-13/18-19	2 CYT	1,1/1,5
ВАЛ	TP >100	(09	19	>1 5 CYT	5,0
	∏P >150	(09	19)1,5 CYT	7,0E-1
PHOM	TITO	(04	15)1,5 CYT	3,6

NCTOYHNK: ■ OBJACTS HR17590 3 CYT 3A W-JMMBOM РАДИОВСПЛЕСКИ II, IV ТИПА 0308 БЕЗ H - ВСПЫШКИ

130	1981 MAN 04		12		110
MET	. TIP >5	>12	6Д10-7Д04	>4,5° CYT	8,0E+1
~	IIP >15	>12	681030	>4,5 CYT	8,0
"	ΠP >25	>12	611352)4,5 CYT	1,53
	∏P >30	>12	611352)4,5 CYT	1,4
	TP >40	>19	6A1352	4,5 CYT	0,48
IMP8	MP 13.7-25.2	12	7100	>4,5 CYT	0,25
	TP 20-40	12	7100)4,5 CYT	0,08
_, ~	TP 40-80	12	7100)4,5 CYT	>0,01
MONG	ппш	51106	6224	4 CYT	0,8

источник: 0 BCTIMUKA 0835 N15 E18 1B HR17620

- ВСПЫШКА 5Д1355 N15 E02 2B HR17620 ВСПЫШКА 5Д2254 N18 W05 1B HR17620 0
- 00 ВЫХОД ОБЛАСТИ НЯ17638 ИЗ-ЗА Е-ЛИМБА
- ОБЛАСТЬ HR17590 7 СУТОК ЗА W-ЛИМБОМ
 - SC 8A1754

131	1981 MAN 09		04		120
MET	ΠΡ > 5	0334	2220	>29 4	1,5E+2
	ΠP >15	0334	2220	>29 4	1,0E+1
*	∏P >25	0334	2220	>29 4	9,0E-1
TMPB	WP 13,7-25,2	04	24)20 4	1,4E+0
_"-	TP 20-40		24)20 Y	3,0E-1
	TP 40-80	04	24	>20 4	9,0E-3
PHOM	ППШ	(07	>08	>1 CYT	1,7E+0

ИСТОЧНИК: ● ВСПЫШКА 8Д2201 NO9 E37 2B HR17638
⊘ ВСПЫШКА 9Д0239 NO4 W56 2N HR17624

132	1981 MAM 10		0 9		221
MET	ΠP >5	0834	13-15		318
"	NP >15	0834	1157	7,5 CYT	76
	ΠP >25	0834	0925	5 CYT	23
"	TF >30	0834	0925	4 CYT	20
"-	TP >40	0834	0925	1,9 CYT	18
"	TP >90	0834	0 925	10 4	5,3
 *_	TP >600	0834	0925	5 4	0,08
IMP8	NP 13,7-25,2	(9	15	>5 CYT	9
""	TP 20-40	(9	>10	>5 CYT	>2
	TP 40-80	(9	>10	>5 CYT	>0,6
πρ08	TP >100	9748	09-11	2 CYT	1,5
БАЛ	NP >150		9-11		1,6
~	TP >300	_	9-11		0,35
"	TP >500		9-11		0.12
HM	TIP >1 CB	9899 1	0900 1	64	1.75% SP
РИОМ	TITUS	(09	13/11401/11408	4,5 CYT	3,6/4,1/4,3

ИСТОЧНИК: О ВСПЫШКА 0715 NO3 W75 1N HR17624 СИЛЬНЫЙ РАДИОВСПЛЕСК 1208

▲ SC 2208; 1411856

RP)40

1437

133	1981 MAN 15				010
MET	ΠΡ >5	0130	>0543	>1,3 CYT	>27
~	₩P >15	0035	>0543	0,8 CYT	>0,87
EHP8	NP 13,7-25,2	5	10	1 CYT	0,15
_*	TIP 20-40	5	10	1 CYT	0,015
<u>. </u>	TP 40-80	5 '	8	0,3 CYT	3,0E-4
MON	TITE STATE	02	08-10	1 CYT	6,8
	источник:	BCTIJIIKA	1380333 N10 E55	3B HR17644	
	Ø	BCITHWKA	1480805 N20 E35 ; 1680533		
134	1981 MAM 16		15	ngga gang gang gang dan dalah dalah sebah dalah	226
MET	πP >5	_	1826/17#2242	>15 CYT	480/600
			1826/1781823	4.3 CYT	31/15
-~-	₩P >15	-	1020/1/21023		
-"- -"-	ΠΡ >15 ΠΡ >25	1531	2339/17#1730	2,2 CYT	

1740029/1741730

1,7 CYT

0,4/0,3

MET	11P >90	1437	1710029		0,013
IMPB	TIP >13,7-25,2	12	21/17Д21	9 CYT	9/3
	NP 20-40	11	21/17月21	9 CYT	1,3/0,4
	TIP 40-80	10	21/17Д21	8 CYT	2,5E-2/1,3E-2
PHOM	TTM	(16	22/17#21	2 CYT	3,6/4,5

135	1981 ИЮЛЬ 20		15	n halfa nikili pilan hagil qilaq nimi jima' min muu haki tipir halfa (muu quan quan qulu in	220
IMP8	ПР 13,7-25,2 ПР 20-40 ПР 40-80	15 15 15	21 17 17	>4 CYT >4 CYT >4 CYT >4 CYT	5 2 0.40
PHOM	TI TI (0)	15	17	2,5 CYT	3,2

ИСТОЧНИК: ● ВСПИШКА 1310 S25 W75 1B HR17736 ■ SC 23Д0646

TIPHMEHAHME: CM.TAKKE BCTINUKY 19,0528 829 W56 28 HR17736

136	1981 ND76 24		14		916
MET	ΠΡ >5	1406	2055/2530942	4,3 CYT	18/42
<i>"</i>	NP >15	1406	2055/2510942	1,5 CYT	0,29/1,7
~~~	ΠP >25	1406	2055/25R0942	28 4	0.1/0.82
	11P >30	1406	2004/2530942	26 4	0.02/0.17
	TP >46	1406	2004	4 4	0,009
IMP8	TIP 13.7-25.2	(17	25Д10	>2 CYT	0.2
	TP 20-40	(17	25110	2 CYT	0.04
-~-	TP 40-80	(17	25410	1,5 CYT	1,6E-3
PUOM	TITE	15	23/25109	1.4 CYT	0.5/1.1

ИСТОЧНИК: Ф. ВСПЫШЕЧНАЯ АКТИВНОСТЬ ОБЛАСТИ HR17760

O ВСПЫШКА 0747 S16 E56 1N HR17760
□ ОВЛАСТЬ HR17736 3 CУТ ЗА W-ЛИМБОМ

SC 25A0514; 25A1322

137	1981 ABFYCT 09	<del></del>	14	the gar after and that the sea and and ante any man was now now use o	110
LL WET	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4787			
MET	TIP >5	1357	(1 <b>0</b> <u>1</u> 0658	>4,6 CYT	>87
	MP >15 ·	1357	(10Д0658	(1,7 CYT	>3,2
	TP )25	1357	(10 <u>0</u> 0658	27 4	<b>&gt;0,45</b>
	NP >30	1357	<b>&gt;10H0147</b>	20 4	)0,38
	NP >40	1357	>10Д0056	12 4	<b>&gt;0.0</b> 8
IMF8	NP 13,7-25,2	14	(10Д06	)4 CYT	<b>&gt;0,7</b>
	TP 20-40	>10	<b>(10</b> 06	>4 CYT	>0,14
	TP 40-80	>10	(10806	4 CYT	>4,5E-3
PMOM	1717111	14	10Д02	)2 CYT	1,1

ИСТОЧНИК: ♦ ВСПЫВЕЧНАЯ АКТИВНОСТЬ ОБЛАСТИ HR17777

Ø ВСПЫШКА 7Д1901 S09 E25 1В HR17777
 Ø ВСПЫШКА 8Д2025 S13 E06 SB HR17777

▲ SC 10Д0434

	1981 СЕНТЯ				010
MET "-	NP >5	12	7X(18-20)/9X0319	4,5 CYT	25/2,4
IMP8	NP 13,7-25,2 NP 20-40 NP 40-80	23 <b>00</b> 7 (48	/ALGGW	)2 CYT 2 CYT 1,5 CYT	0,4
."	TP 20-40	2 (18 12	/Д13 \7#13	2 CYT	1,0E-1 >8,0E-3
	TP 40-80	12	57813	1-5 CYT	)2,1E-5
MON	niim	(24	7 <b>A</b> 20	)1 CYT	1,1
		`-'	ALV		***
	источник:	O BOTHWA	4 582346 S12 W66 1N	HR17817	
			4 6A2102 NOB E49 1N		
			A 780052 N10 E41 SB	HR17830	
		△ SC 812:	146		
139	1981 CEHTAI	6Pb 17	11		010
1ET	TP \5	1077	>19д0753/20д(10-13) >19д0753/20д(09-13) 19д1043/20д(09-17) 19д1043/20д(09-17) 19д11/20д(10-24) 19д08/20д08 19д08/20д08	7 CYT	\4 7/10
.~.	NP )15	(18)2227	)1980753/20R(09-13)	>4 CYT	>6,7/10 >0,88/1,3
-~-	IIP >25	1882012	1981043/208(09-17)	4 CYT	0,31/0,23
-"	ΠP >30	1842012	19#1043/20#(09-17)	4 CYT	0,27/0,19
MP8	HP 13,7-25,2	2 12	19A11/20A(10-24)	)6,5 CYT	0,09/4,16
-"	IIF 20-40	12	19Д08/20Д08	>6,5 CYT	0,016/0,0
-~	11P 40-80	. 12	19408/20408	)6,5 CYT	2E-3/2,5E
MON	IIIW	12 20Д02	20Д10/21Д06	)2,5 CYT	0,4/0,5
	источник:	♦ TEOXOX	цение активных облас		17842 M 1785
			4 17 <b>0</b> 0525 N12 W81 1N		
			4 1840130 NOS E66 SN		
			1930540 NOS E46 1B	HR17853	
			1912; 19Д0137	•	
140	1981 CEHTAI	БР <b>Ь</b> 23	12	•	. 900
1ET	MP >5	12	24,08-25,10 24,08-25,10 (24,12) (25,100 (25,100	9 СУТ	2,8
_~_	NP >15		24Д08-25Д10	2,5 CYT	0,16
IMP8	NP 13,7-25,2	2 12	(24Д21	7 CYT	>5,0E-2
- ~	NP 20-40		<25Д00	7 CYT	>4,0E−3
- <b>"</b> -	TIP 40-80	24402	(25Д00	2,5 CYT	>1,6E-4
	источник:	BCITHIUK	4 22Д0834 S11 E68 1N	HR17863	and the law was true beer than the other law the law t
 141	1981 OKTABI	Р <b>Ь 0</b> 8	01	100	120
141	1981 ОКТЯБІ	Р <b>Ь 0</b> 8	01		
141 MET	1981 OKTABI	Р <b>Ь 0</b> 8	01	>4,3 CYT >4.3 CYT	267 37
141 HET -"-	1981 OKTRE	Р <b>Ь 0</b> 8	01	>4,3 CYT >4.3 CYT	267 37
141 YET -"-	1981 OKTRE	Р <b>Ь 0</b> 8	01	>4,3 CYT >4.3 CYT	267 37
141 MET -"-	1981 OKTREI IIP >5 IIP >15 IIP >25 IIP >30 IIP >40	% 08 0222 0056 0056 0056	01 9Д16-10Д02 9Д16-10Д02 9Д16-9Д24 9Д16-9Д24 9Д(16-18)	>4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT	267 37 6,3 5,5 2,7
141 MET 	1981 OKTREI IIP >5 IIP >15 IIP >25 IIP >30 IIP >40	% 08 0222 0056 0056 0056	01 9Д16-10Д02 9Д16-10Д02 9Д16-9Д24 9Д16-9Д24 9Д(16-18)	>4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT 4,2 CYT	267 37 6,3 5,5 2,7
141 1ET -"- -"- -"- IMP8	1981 OKTREI IIP >5 IIP >15 IIP >25 IIP >30 IIP >40	% 08 0222 0056 0056 0056	01 9Д16-10Д02 9Д16-10Д02 9Д16-9Д24 9Д16-9Д24 9Д(16-18)	24,3 CYT 24,3 CYT 24,3 CYT 24,3 CYT 24,3 CYT 24,3 CYT 4,2 CYT 24 CYT	267 37 6,3 5,5 2,7 90,6 2,5
141 MET 	1981 OKTRE	(0222 0056 0056 0056 0056 0056 2	91  9д16-10д02  9д16-10д02  9д16-9д24  9д16-9д24  9д(16-18)  >17  11д(05-09)  10д03-11д09	)4,3 CYT )4,3 CYT )4,3 CYT )4,3 CYT )4,3 CYT 4,2 CYT )4 CYT )4 CYT	267 37 6,3 5,5 2,7 >0,6 2,5 0,45
IA1  IET  ILAT  IL	1981 OKTREI  IIP )5 IIP )15 IIP )25 IIP )30 IIP )40 IIP 13,7-25,7 IIP 20-40 IIP 40-80	(0222 0056 0056 0056 0056 0056 2	91 9816-19892 9816-19892 9816-9824 9816-9824 98(16-18) >17 118(95-99) 10803-11809 9812-10803	)4,3 CYT )4,3 CYT )4,3 CYT )4,3 CYT )4,3 CYT 4,2 CYT )4 CYT )4 CYT )4 CYT	267 37 6,3 5,5 2,7 90,6 2,5 9,45 0,09
141 МЕТ ———————————————————————————————————	1981 OKTRBI  IIP >5 IIP >15 IIP >25 IIP >30 IIP >40 IIP >90 IIP 13,7-25,2 IIP 20-40 IIP 40-80 IIP >150	(0222 0056 0056 0056 0056 0056 2	91 9д16-10д02 9д16-10д02 9д16-9д24 9д16-9д24 9д(16-18) >17 11д(05-09) 10д03-11д09 9д12-10д03 0300-03330	>4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT >4 CYT >4 CYT >4 CYT >4 CYT >4 CYT	267 37 6,3 5,5 2,7 >0,6 2,5 0,45 0,09 0,3
141 ———————————————————————————————————	1981 OKTREI  IIP >5 IIP >15 IIP >25 IIP >30 IIP >40 IIP >90 IIP 13,7-25,7 IIP 20-40 IIP >150 IIP >150 IIP >150 IIP >250	(0222 0056 0056 0056 0056 0056 0056 2 01 01 (00 (00	91 916-10102 9116-10102 9116-9124 9116-924 91(16-18) >17 111(05-09) 10103-11109 9112-10103 0300-0330	>4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT >4 CYT >4 CYT >4 CYT >4 CYT >4 CYT >4 CYT >4 CYT	267 37 6,3 5,5 2,7 >0,6 2,5 0,45 0,09 0,3
141 1ET 	1981 OKTRBI  IIP >5 IIP >15 IIP >25 IIP >30 IIP >40 IIP >90 IIP 13,7-25,2 IIP 20-40 IIP 40-80 IIP >150	(0222 0056 0056 0056 0056 0056 2	91 9д16-10д02 9д16-10д02 9д16-9д24 9д16-9д24 9д(16-18) >17 11д(05-09) 10д03-11д09 9д12-10д03 0300-03330	>4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT >4,3 CYT >4 CYT >4 CYT >4 CYT >4 CYT >4 CYT	267 37 6,3 5,5 2,7 0,6 2,5 0,45 0,09 0,3

ИСТОЧНИК: ● ВСПЫШКА 7Д2259 S17 E83 IN HR1790 ▲ SC 8Д1618; 11Д1238

142	1981 ОКТЯБРЬ	12	07		333
MET	ΠΡ >5	0717	14Д0159	22 CYT	2940
_~_	RP >15	0717	13月2230	12 CYT	605
_~_	ΠP >25	9717	>13Д0713	>7 CYT	>154
_~_	ΠP >30	0717	>13Д0713	>7 CYT	>78
_"_	ΠP >40	0717	>13Д0713	>6 CYT	>64
	TP >90	0717	>12 <b>Д</b> 12	4,7 CYT	>13
_~_	IIP >600	0717	)12 <u>1</u> 12		>0.89
IMP8	NP 13.7-25.2	8	14106	>24 CYT	40
	TP 20-40	8	₹14Д06	24 CYT	>8
	TP 40-80	8	13408	20 CYT	1
EAJ!	ΠP >150	0650	0850-0950	4 CYT	5.6
_"-	TIP >300	9659	9850-0950	4 CYT	1,15
_~_	TIP >450	9659	0850-0950		0.45
HH	ΠP >1 ΓB	0650 5	0910 5		10.3 AT
PUOM	TITU	(09	12/13/10/14/04	8,5 CYT	2,4/6,8/

ИСТОЧНИК: ● BCTIHWKA 0615 S18 E31 2B HR17906 ▲ SC 1480535; 1682029

***************************************	
HET ΠΡ >5 (1717 )11 (02-05) - )19	
-"- ΠP >15 (10A1000 10A(22-23) - 0,35	
IMP8	-2
-"- NP 20-40 (17 (10A10)/(11A06) )2 CYT )5E-3/6E-3	5
-"- ΠP 40-80 (17 (10Д10)/(11Д06) >2 CYT 5,0E-4	
BEH13,14 NP >25 - 9,0E-3	

( YFOX 3EMXX-COXHUE-BEH13,14 (10°E )

источник: ● BCTINWKA 1225 S17 E17 2B HR17989

▲ SC 11∄1238

P >5				
	2355	15Д0503	<b>&gt;30 4</b>	2,23
P >15	2355	15Д0503	(16 4	0,48
P >25	2355	15R0409	(16 4	0,16
P >30	2355	15Д0409	(16 4	0,12
P >40	2355	1510409	<b>(16 4</b>	0,10
P 13.7-25.2	(3	15Д04	>3 CYT	8,0E-2
	(3	)15104	>3 CYT	11,7E-2
	₹3	>15104	>3 CYT	>3,0E-3
	23	-	_	0,4
	P >25 P >30 P >40 P 13,7-25,2 P 20-40 P 40-80 P >25	P )25 2355 P )30 2355 P )40 2355 P 13,7-25,2 (3 P 20-40 (3 P )25 23	P )25 2355 1580409 P )30 2355 1580409 P )40 2355 1580409 P 13,7-25,2 (3 15804 P 20-40 (3 )15804 P \ 40-80 (3 )15804 P \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	P )25 2355 15A0409 (16 Y P )30 2355 15A0409 (16 Y P )40 2355 15A0409 (16 Y P )40 2355 15A0409 (16 Y P )40-80 (3 )15A04 )3 CYT P 40-80 (3 )15A04 )3 CYT

● BCTINEKA (2209 N15 W47 2B HR17992

SC 1682029

145	1981 НОЯБРЬ 22		15		600
140	1701 10/000 22				C 17 17
MET	TIP >5	1443	2331858	3,1 CYT	17
"	ΠP >15	1535	2311858	2 CYT	0.68
IMP8	NP 13,7-25,2	(16	24д05	>2 CYT	3,5E-2
"	TIP 20-40	(16	24Д02	>2 CYT	4,0E-3

IMP8 NP 40-80 24802 (16 2 CYT 1,3E-4 BEH13.14 NP )25 8.0E-3 ( YFON 3EMNR-CONHUE-BEH13.14 (10 E )

> источник: ● BCIIJIIKA 0653 N13 W21 1B HR18027 ▲· SC 25A0929

146	1981 ДЕКАБРЬ	<b>0</b> 5	16	. 1980 1980 1980 1988 1988 1988 1988 1988	910
				. The old that the war out has been seen and along the see.	
MET	IIP )5	1535	<b>(6Д0517</b>	4.1 CYT	>16
_~_	ΠP >15	1445	(1901	(1,6 CYT	0,8
-"-	IIP >25	1445	(1901	1,2 CYT	0,06
, <b></b> ~-	TP >30	1445	1901	1,2 CYT	0,02
IMP8	NP 13,7-25,2	(17	- 24	)4.5 CYT	0.1
-"-	TP 20-40	(17	24	4.5 CYT	1.8E-2
	NP 40-80	(17	22	3 CYT	5.0F-4

источник:

II NIII

PHOM

BCTIHUKA 431727 N20 E52 SF HR18055 0 DEJIACTE HR18035 1CYT 3A W-JUMEON

6105/6123

Ø ИСЧЕЗНОВЕНИЕ ВОЛОКНА (1215-1315) N15-30 W35-45

2 CYT

0.4/0.5

SC 712123

20

147	1981 ДЕКАБРЬ (	09	21		220
MET	ΠΡ >5		10Д1148	)4,3 CYT	220
-"-	ΠP >15	2106	10Д1005	2 CYT	25
-~-	11P >25	2106	10Д1005	1,5 CYT	2,25
	NP >30	2106	10Д1005	1,3 CYT	2,0
	RP >40	2106	10Д1005	1,1 CYT	0,53
IMP8	<b>∏P 13,7-25,2</b>	(23	>10Д10		>4
<b>*</b>	TP 20-40	(23	(10月10		>6,0E~1
_~_	TP 40-80	(23	(10Д09		)3,8E-2
PHON	TITUM	10Д03	10Д11	2,4 CYT	3,2
H13,1	4 ∏P >25	-			5,9

 BCTHIMKA 1817 N10 W16 2B HR18058 источник: SC 1210144

148	1981 AEKABPI	27	10		(0)10
MET	NP >5	<b>0</b> 8- <b>0</b> 9	<28Д0117/29Д1033	4,6 CYT	)9,3/14,7
"	ΠP >15	1041	(28月0117	2,3 CYT	<b>&gt;1</b>
~-	ΠP >25	1132	>16	2,2 CYT	>0,11
	ΠΡ >3 <b>0</b>	1132	>16	1,6 CYT	<b>&gt;0,08</b>
IMP8	NP 13,7-25,3	2 10	(28214	>5 CYT	>0,1
	∏P 20-40	10	(28 <b>314</b>	)4 CYT	>0,01
-"-	ΠΡ 40~80	10	>12	)3 °CYT	>5,0E-4
EH13,14	IIP >25	0641-0701			1,3
MON	17 17 184	12	22/29112	2,2 CYT	0,6/0,6
	( УГОЛ ЗЕМЛЯ	<b>А-СОЛНЦЕ-ВЕ</b>	H13,14 PABEH 0°)		

BCTHWKAT 0155 S13 E18 1N HR18093 источник: 0 0239 S16 E24 IN HR18093 C0243 S13 E16 1B HR18093

SC 2910456

149	1982	ЯНВАРЬ 02		07		(0)00
MET	NP >	5 <b>*</b>	>0650	0926	2 CYT	9.8
_~_	TP >	15*	>0650	0833	8 4	0.62
	MP )	25×	)0650	0B33	64	0.09
	IIP >	30×	>0650	0833	5 4	0.07
<b></b>	RP )	40×	) 0 6 5 0	0450	4 4	0.06
IMP8	IIP 1	3,7-25.2		12	2 CYT	4,5E-2/2,5E-2
	IIP 2	0-40	•••		2 CYT	/3,5E-3
<i>"</i>	IIP 4	0-80	_	12	2 CYT	6.0E-4/4.0E-4
EH13,14	IIP )	25	· <u>-</u>	-	T	8.0E-2
			<b>Л</b> НЦЕ-ВЕН13	.14 PABEH 0		U, VL. 2

ИСТОЧНИК: ● ВСПЫШКА (0616 N19 W88 1B HR18090 * ВОЗМОЖЕН ВКЛАД ЭЛЕКТРОНОВ C E >2-10 НЭВ

150	1982	январь з	l	00		330
MET	ne :	>5	(0638	/1932	>1.4 CYT	/2,1E+3
~~~	nr '	15	0023	(03-04)/1750	)1,4 CYT	269/340
~~~ .	NF :	25	9923	0258/1750	>1.4 CYT	84/47
	nr :	30	0023	0258/1750)1.4 CYT	52/36
	np :	40	0023	0258/1750	>1.4 CYT	32/12
-*-	nr.	99	0923	0258/1057 •	19 4	0,51/0,12
IMP8	HP :	13,7-25,2	(18	18		40
-"-	TP :	20-40	(18	18		8
-"	RP 4	40-80	(18	18		0,5
PHOM	TETTW		(02	04/20/1113)2 CYT	3.6/7.4/4
H13,14	HP :	25			~ ~	57

(YCON SEMAN-CONHUE-BEH13,14 (10° N)

NCTO4HNK:		BCTILINKA (- 30Д2325	S14	E13	28	HR18176
		1	- 308233 3	S12	E.06	1B	(HR18176
	0	BCTILLUKA	3171319	S12	E20	18	HR18176

SC 0102; 1A1100

151	1982 ФЕБРАЛЬ 0	1	18		230
MET	ΠΡ >5		(230640	الله الله الله الله الله الله الله الله	>600
-"-	NP >15	1746	(210640)5 CYT	120
- "- ,	ΠP }25	1746	(210640)4 CYT	}28
-"-	NP >30	1746	(2 4 0640	4.2 CYT	>21
	NP >40	1657	(210640	3.5 CYT	1)12
~~~	NP >90	1514	2019	1.7 CYT	0.89
	TP >600	1514	2019	22 4	0.015
IMP8	NP 13,7-25,2	18	2112	>5 CYT	15
	TP - 20-40	18	2Д12	>5 CYT	4
	NF 40-80	18	(2 <b>)</b> 12	>5 CYT	>0.45
PHON	TITU	<19	2405/2412	>5 CYT	3.4/5.0
BEH13,14	11P >25	-	-	_	60
	D-RKMBE KOTY )	ОЯНЦЕ-ВЕН	(13,14 (10°W )		

- источник: BCTHWKA 1350 S16 W09 3B HR18176
  - ▲ SC 3A0129; 5A1611

152	1982 ФЕВРАЛЬ (	97	00		010
MET	RP >5.	0013	0243/10-15	1,6 CYT	7.8/45
	ΠP >15	0013	0243/10-15	1.5 CYT	0.83/2.5
-"-	ΠP >25	0013	0243/0939 '	20 4	0,23/0,29
-"-	11₽ >30	0013	0243/0939	20 4	0,15/0.20
-~-	NP )40	0013	0243	15 4	0.10
IMP8	WP 13,7-25,2	(24	(24	1 CYT	)7.5E-2
	TP 20-40	(24	(24	1 CYT	>8.0E-3
	TP 40-80	(24	(24	1 CYT	)3.5E-4
P'HOM	TITU	07	17	>1 CYT	1.0
EH13.14	ΠP >25	-	-		0,21

( УГОЛ ЗЕМЛЯ-СОЛНЩЕ-ВЕН13,14 РАВЕН 10 ₩ )

ИСТОЧНИК: • ВСПМШКА (6Д2050 S17 W64 1N HR18176 6Д2050 S12 E38, 1B HR18204

Ø BCTINWKA 642351 816 W88 3B HR18176

153	1982 ОЕВРАЛЬ (	98	14		[1]00
MET	ΠΡ >5*	1353	1446/910602	)27 <b>4</b>	66/22
	ΠP >15*	1353	1446/910602	>27 4	4.3/0.95
-"-	RP >25*	1353	1446/9月0602	23 4	0,78/0,11
~_	ΠP >30*	1353	1446/930602	22 4	0,70/0,10
_~_	TP >40*	1353	1446	8 4	0.48
"	TP )90*	1353	1446	7 4	0.03
IMPB	NP 13,7-25,2	>12	(18	1.5 CYT	>1.0E-1
	MP 20-40	>12	(18	1,5 CYT	)4,0E-2
-~-	TIP 40-80	>12	(18	1.5 CYT	>6,0E-3
EH13,14	RP >25	-		Ann	0.7
	( YEON SEMIN-	СОЛНЦЕ-ВЕІ	113,14 PABEH 10°W	<b>)</b>	

источник:

- BCTIMUKA 1204 S15 W88 1B HR18176
- BCIINWKA 940336 S12 E05 1B HR18204
- ▲ SC 11Д1313
- * ВОЗМОЖЕН ВКЛАД ЭЛЕКТРОНОВ С Е >2-10 МЭВ

154	198	2 MAPT 07		04		016
MET	ΠP	>5	0418	0912/1851	4.5 CYT	24/31
_~_	ΠP	>15	0418	0747/1851	1,9 CYT	4,1/1,8
	ΠP	>25	0418	0747	1,7 CYT	1,17
	ΠP	>30	<b>0418</b>	<del>0</del> 747	1,7 CYT	0,98
	ΠP	)40	0418	9653	1.6 CYT	0.71
-"-	ΠP	)90	0418	0418	11 4	0,13
IMP8	ΠP	13,7-25,2	< 06	18	5 CYT	0,5
_~_	ΠP	20-40	<b>406</b>	₹18	4 CYT	)7,0E-2
	ΠP	40-80	(06 .	(06)	4 CYT	0.01
EH13,14	4 NP	>25		-	-	3,6
PHOM	HUM		05	11	2 CYT	1.0

ИСТОЧНИК: ● ВСПЫШКА 0249 N19 W53 2B HR18240
РАДИОВСПЛЕСК 1352 БЕЗ Нα -ВСПЫШКИ
(Нα -ПАТРУЛЬ ОТСУТСВОВАЛ)

155	1982 HAPT 30		08		[1]10
MET	IIP )5	<b>6</b> 8	1216/3181417	2,6 CYT	2,5/12
	ΠP >15	<b>0</b> 8	1216	10 4	0,38
<b></b> *	RP )25	<b>0</b> 8	1216	9 4	0,15
	IIP >30	<b>ø</b> 8	1216	9 4	0,09
	∏P >40	08	1127	64	0,06
IMP8	NP 13,7-25,2	(AR	(13/31 <b>A</b> 14	)3 CYT	>3E-2/3,5E-2
-"-	IIP 20-40	(08	(24	3 CYT	)2,5E-3
	TIP 40-80	(08	>08	3 CYT	)7.0E-4
PHOM	nnm	31408	31 <b>Д</b> 15	20 4	0,8
	источник:		(0521 N12 W12 2B (0523 N11 W00 1B		
	<b>Ø</b>	BCHLHHKA	31 <b>,00</b> 42 N12 W26	1N HR18280	
156	1982 MOH6 03		21	gang piapa bang dalah dalah dalah dalah piata bada salah basa dalah dala	110
MET	ΠΡ >5		9A(05 ¹ 18)	24 CYT	222
~_	∏P >15	2118	7 <b>Д17-8Д</b> 22	18 CYT	20
-"-	ΠP >25	2118	7 <b>317-8322</b> ,	12,5 CYT	2,7
_~_	TP >40	4 <b>20043</b>	7 <b>月</b> 18-8 <b>月10</b>	9,5 CYT	0,72
_~~_	IIP >90	<b>4Д0318</b>	5803-6804	5 CYT	0,08
IMP8	NP 13,7-25,2	24	9A(06-15)	>24 CYT	0,55
~_	NP 20-40	24	9A(06-15)	>20 CYT	0,14
~_	TP 40-80	24	)9A(06-18)	)20 CYT	0,02
FWOM	TITE	4122	6Д16/8Д17/19Д12.	12 CYT	0,5/1,1/1,
	источник:	высокая	итла канчэшилэв і	вность области	HR18405
	' ě	BCIIMIKA	1141 S09 E71 2B	HR18405	
	ø	BCTIMBKA	411313 S10 E54	1B HR18405	
	0	BCTIMBKA	580614 S08 E43	2B -~-	
	ě	ВСПЫШКА	5Д0726 S07 E46	2B -"-	
	ě	BCHIJIIKA	681626 S10 E25	28 -"-	
			44; 9Д0040; 12Д1		
	_		C 12 MOHR BLICOK		АКТИВНОСТЬ
			HR18422; C 21		

157	1982 ИЮНЬ 27		22		010
MET	ΠΡ >5	2217	28Д(10-14)	6,7 CYT	28
_~_	TIP >15	2217	28月(10-14)	4,5 CYT	4,9
	IIF >25	2217	28Д(10-14)	2,9 CYT	0,96
_~_	ΠP >30	2217	28A(10-14)	2,9 CYT	0,82
_~_	ΠP >40	2217	28Д1025	1,5 CYT	0,41
IMP8	NP 13,7-25,2	₹28108	(28108)/30100	4 CYT	)1E-1/4,5E-2
	IIP 20-40	28408	(28Д08)/30Д00	3 CYT	)4,5E-2/1,2E-2
	IIP 40-80	28108	(28108)/30100	3 CYT	)1,2E-2/2E-3
PNOM	nnu	28408	28Д13	1 CYT	0,5

ИСТОЧНИК: О ВСТЫШКА 1025 N15 W90 2N HR18430 ОБЛАСТЬ HR18422 ЗА W-ЛИМБОМ

158	1982 ИЮЛЬ	09	99		340
MET	₹ 75 (TP )5	<b>0</b> 828	10Д(13-19/	>8 CYT	10/
	-"-		/11 <b>д0</b> 959/		/66/
	<b>"</b>		/>12д0131/13д1655		/>190/5,0E+
	ΠP >15	0939	10月(13-17)/	8 CYT	0,75/
-"-			/11Д0959/		/2,4/
	<b>"</b>		/>12д0131/13д1655	,	/>8,9/533
	11P >25	(10Д0740	10Д(9-13)/11Д0959.	/ 6 CYT	0,12/0,27/
~-			/>12Д0131/13Д1934		/>1,04/50
	∏P >30	(10Д0740	10Д(9-13)/11Д0959	6 CYT	0,08/0,21/
_~_			/>12Д0131/13Д1934		/>1,03/39
	NF >40	(10Д0740	>12Д0131/13Д1934	3,7 CYT	)0,22/8,4
	ΠP >90	1211616	1381934	1,4 CYT	0.02
IMP8	<b>TP 13,7-25</b>		12802/13820	>9 CY1	1/80
<i>"</i>	NF 20-40	69	12Д02/>13Д13	)9 CYT	/0,16/)3,5
<b>"</b>	TP 40-80	<b>0</b> 9	12Д02/)13Д13	8 CYT	/0,009/>0,1
БАЛ	TP )100	· ·	13408		0,07
-~-	ΠP >120	-	13,08	_	0,02
MON	nnw	10Д03	10Д12/11Д10/	10 CYT	0,6/0,8/
-"			/12Д(01-08)/13Д17		1,6/>15
	источник :	BCIIIIII	IKA 0720 N18 E76 3B	HR18747	
			IKA (0832 N11 E72 1B	HR18474	
			IKA 810650 N10 E89 1N		
		41	AR BCILWEYHAR AKTUBH		1 HR18474
			KA 1200900 N11 E36 3		111120-77-1
			A0953; 13A1617; 16A1		
159	1982 ИЮЛЬ		23		106
				et etr 100 ma no eo eo eo eo eo eo eo	
MET	11P >5	2245		-	53
-"-	ΠP >15	2245	5 2334	<del></del> .	7,1
"	∏P >25	2245	5 2334	74	1,9
	IIP >30	2245	2334	74	0,5
_"	11P >40	2245	2334	64	0,1
IMPB	TP 13,7-25	,2 <18A1	.2	-	_
	RP 20-40	(1811	12 <b>(1980</b> 3	>4 CYT	>4,5E-2
_~_	TP 40-80	(18 <b>)</b> 1	2 (19803	2 CYT	)6,0E-3
	источник:	• вспы	IKA 1028 N14 W33 2B	HR18474	
160	1982 ИЮЛЬ	22	18		230
MET	TIP >5	1736	23,0028/23,122/24,181	0 4,8 CYT	621/40/39
	ΠP >15	1827	2245/23122/2411810	•	67/6,2/5,1
	ΠP >25	1918	2245/23/22/24/1810	3,3 CYT	
	ΠP >30	2009	2245/23Д22/24Д1810	3,1 CYT	9,9/0,9/0,62
	11P >40	2009	2245/23422/2441810	2,4 CYT	4,1/0,8/0,35
	ΠP >96	2009	2245	9 4	0,024
IMP8	NP 13,7-25	.2 (24	(24/24100/24120	>4 CYT	)9/0,7/06
_~~_	TP 20-40	(24	(24/24 <b>Д</b> 00/24 <b>Д</b> 20	5 ČÝŤ	>1,5/0,12/0,15
-"-	TP 40-80	(24	(24/24100/24120	4 CYT	)1,2E-1/7E-3/9E-
PHOM	TITE	19	23Д01/23Д20/24Д18	3,2 CYT	5,1/1,1/0,9
	источник:	m AKTM	ВНОСТЬ ОБ <b>Л</b> АСТИ HR184	74 на западі	SAMNK MOH

ВСПЫШКА 1648 N16 W89 1N HR18474 1724 N20 W59 SF HR18474 1733 N29 W86 SF HR18474

161	1982 ABFYCT 14	) · ·	<b>0</b> 5		01010
MET	TIP >5*	0518	0612	36 4	127
	ΠP >15*	0518	0612	9 ዛ	10
_"-	RP >25*	<b>0518</b>	0612	84	1,7
	TIP >30*	0518	0612	7 4	1.42
	∏P >40×	0518	0612	4 4	0.6
<b>"</b>	TP >90*	0518	0518	3 4	0,03
IMP8	MP 13.7-25.2	(12	(10)	36 4	>1,2E-1
	IIP 20-40	*			>1,0E-3
_"_	TP 40-80	*	₹12		>5,0E~5
РИОМ	nnw	(06	>06	13 4	0.5

ИСТОЧНИК: 

ВСПЫШКА 0506 N11 W63 1B HR18511

* ВОЗМОЖЕН ВКЛАД ЭЛЕКТРОНОВ С Е >2-10 МЭВ *

162	1982 СЕНТЯБР	ь 04	07		120
MET	IIP >5	0720	5Д(10-16)/6Д(02-07)	6,3 CYT	14/140
	NP >15	0720	5A(10-16)/6A(02-07)	2,5 CYT	0,86/1,25
	ΠP >25	0720	5A(07-08)	2,3 CYT	0,15
-"-	TP >30	0726 É	5其(07-16)	2,3 CYT	0,1
IMP8	TP 13,7-25,2	98	(5Д00)/(6Д00)	3 CYT	7E-2/2E-1
	TP 20-40	98	(5Д00)/(6Д00)	3 CYT	1,4E-2/2,5E-2
"-	TP 40-80	89	(5Д00)/(6Д00)	3 CYT	5,0E-4/2,5E-4
PHOM	TITE	15	5Д13/6Д02	5,5 CYT	0,8/2,1

# ИСТОЧНИК: • ВСПИШКА 0025 N12 E38 2B AR3886

▲ SC 5A2250; 6A0753; 9A0105

163	1982 HOSE	БРЬ 22	14		120
MET	NP >5	1254	1526/2223/24A(02-10)	>3,4 CYT	12/62/148
<b></b> "	MP >15	1343	1526/2223/24A(02-10)	3,4 CYT	1,6/18/12
-"-	MP >25	1343	1526/2129/24A(02-10)	2,4 CYT	0,3/4,3/1,6
-"-	ΠP >30	1343	1526/2129/24A(02-10)	2,4 CYT	0,25/3,9/1,3
	TIP >40	1343	1526/2129/24A(02-10)	2,3 CYT	0,08/2,3/0,37
	11P >90	1343	2038	8 4	0.27
IMP8	NP 13,7-2	25,2 >12	)24/24A(06-10)	>3,5 CYT	=)1.6/2
	TP 20-40	712	22/24806	>3,5 CYT	0,3/0,5
"	TP 46-80	)12	22/24306	>3,5 CYT	0.07/2.5E-2
PHOM	HIIM	(20	23/248(02-12)	>3 CYT	1,8/2,8
BEH13,1	4 MP >25	_	=		1.4
	(YEON BEM.	ля-солнце-і	BEH13,14 PABEH 35° W)		

THE SCHOOL COMMITTED DELITED THE HEADEN GO. W.

- MCTOYHUK: O BCTIMIEYHAR AKTUBHOCTH AR3994 C 21 HORBER
  - ВСПЫШКА 1208 S08 W34 SN AR3994
  - Ø BCTHNUKA 1514 S11 W36 1N AR3994
  - BCTHWKA 23A1109 S06 W54 1N AR3994
  - ▲ SC 23A0917; 24A0922

ΠP >5	0319	1143	)8,6 CYT	330
NP >15	0319	1143	)8,6 CYT	64
¶P >25	0319	1143	>8,6 CYT	- 17
ΠP >30	0319	1143	4.8 CYT	14
ΠP >40	0319	0914	4,7 CYT	9,7
NP >90	0319	0914	2,9 CYT	2,9
TP >606	0319	0640	1 CYT	0,15
ΠP 13,7-25,2	03	15	>5 CYT	5
TP 20-40	<b>ø</b> 3	15	>5 CYT	1,2
TP 40-80	03	15	>5 CYT	0,4
NP >120	٠.	0650	<b>)10</b> 4	1,8
ΠP >200		0650	<b>&gt;10</b> 4	0,66
NP >350		<b>0</b> 65 <del>0</del>		0,2
NP >500		0650		0,06
RP >1 FB	0305 5	<b>0455 5</b>	64	4,6%AN
TITH	<b>0</b> 5	14/22	7,4 CYT	)2,9/2,9
IIP >25	-		_	1,2E+3
	NP >25 NP >30 NP >40 NP >90 NP >606 NP 13,7-25,2 NP 20-40 NP >120 NP >120 NP >120 NP >350 NP >560 NP >1 FB NP >1 FB	NP   25   0319   NP   25   0319   NP   240   0319   NP   240   0319   NP   2640   0319   NP   2640   0319   NP   2640   03   NP   2640   03   NP   2640   03   NP   2640   NP   2640   NP   2560   NP   2560   NP   2560   NP   2550   NP   255   NP   255	NP   25	ΠP   25   0319   1143   18,6 CYT     ΠP   30   0319   1143   4,8 CYT     ΠΡ   30   0319   0914   4,7 CYT     ΠΡ   309   0319   0914   2,9 CYT     ΠΡ   3,7-25,2   03   15   5 CYT     ΠΡ   13,7-25,2   03   15   5 CYT     ΠΡ   20-40   03   15   5 CYT     ΠΡ   40-80   03   15   5 CYT     ΠΡ   3120   0650   310   4     ΠΡ   3250   0650     ΠΡ   350   0650     ΠΡ   31   18   0305 5   0455 5   6 4     ΠΠΨ   05   14/22   7,4 CYT     ΠΕ   143   1843   1843   1845   1845   1845     ΠΠΨ   05   14/22   7,4 CYT     ΠΕ   143   1843   1845   1845   1845   1845     ΠΠΨ   05   14/22   7,4 CYT     ΠΕ   143   1845   1845   1845   1845   1845     ΠΠΨ   05   14/22   7,4 CYT     ΠΕ   143   1845   1845   1845   1845   1845     ΠΠΨ   05   14/22   7,4 CYT     ΠΕ   143   1845   1845   1845   1845   1845     ΠΠΨ   05   14/22   7,4 CYT     ΠΕ   1845   1845   1845   1845   1845   1845     ΠΠΨ   05   14/22   7,4 CYT     ΠΕ   1845   1845   1845   1845   1845   1845     ΠΕ   1845   1845   1845   1845     ΠΕ   1845   1845   1845   1845   1845     ΠΕ   1845   1845   1845   1845   1845     ΠΕ

источник:

- ВСПЫШКА[0230 S12 W87 1N AR3994 0207 N10 W78 1N AR4001
- ВСПЫШЕЧНАЯ АКТИВНОСТЬ ОБЛАСТИ AR3994 ЗА W-ЛИМБОМ
- SC 30A1211

165	1982 ДЕКАБРЬ (	)4	18		000
MET	ΠΡ >5	1805	61(02-04)	)3,2 CYT	14
_~_	MP >15	1805	5Д02-6Д00	)3,2 CYT	1,3
-"-	IIP >25	1805	5A(01-03)	3,2 CYT	0,29
	NP >30	1805	5A(01-04)	3 CYT	0,23
-"-	IIP >40	1805	5B(01-04)	2,2 CYT	0,08
IMP8	MP 13,7-25,2	(24	51(00-24)	>3 CYT	0,09
"" <u> </u>	TP 20-40	(24	5A(00-24)	)3 CYT	0,025
_"-	NP 40-80	(24	5Д(00-24)	<b>)3 CYT</b>	0,003

источник:

- ОБЛАСТЬ AR3994 НА НЕВИДИМОЙ ПОЛУСФЕРЕ СОЛНЦА ВСПЫШЕЧНАЯ АКТИВНОСТЬ AR4005 НА ЦМ
- Δ SC 780329

166	1982 \ ДЕКАБРЬ (	8	<b>01</b> :		233
MET	π _P >5	0046	0409	)5,4 CYT	1,5E+3
_~_	IIP >15	0046	0228	>5,4 CYT	467
_~_	ne >25	0046	0228	4,9 CYT	152
-~-	IIP )30	0046	0228	4,9 CYT	.97
_~_	∏P >40	0046	0228	3,7 CYT	85
	∏F >90	0046	0136	2,7 CYT	24
_~_	TP >600	0046	0046	1,2 CYT	0,93
IMP8	NP 13,7-25,2	00	05/>08	>6 CYT	30/)40
_~_	BP 20-40	00	02	>6 CYT	4,5
_~_	IIF 40-80	00	02	<b>ን</b> ፊ ርሃፐ	1,4
KAB	IIP >160		₹08	>1 CYT	>3,3
	IIP >250		(08	)1 CYT	>0,7

RAB NP >450 (08 0.09 5 4 ΠΡ >1 ΓΒ 7Д2400 5 HM 0020 5 28%AT 01 3,3 CYT PHOM ппш 06/11 8,2/8,2 BEH13.14 IIP >25 1.3 ( УГОЛ ЗЕМЛЯ-СОЛНЦЕ-ВЕН13,14 РАВЕН 35° W )

> ИСТОЧНИК: ● ВСПЫШКА 7Д2341 S19 W86 1B AR4007 ■ SC 10Д0721

167	1982 ДЕКАБРЬ	13	21		6 000
MET	ΠΡ >15	2118	(14Д0919	)27 Y	>0,86
"-	TP >25	2206	(14Д0919	> > > > > 26	>0,20
-"-	11P >30	2266	(14Д0919	25 4	>0.17
-"-	TP >40	2206	(14)0919	23 4	90,08
IMP8	TIP 13,7-25,2	>14403	(14Д1В)		>1,0E-1
	TIP 20-40	>14803	(14118)		>2.5E-2
-"-	NP 40-80	>14803	(14 <b>Д</b> 18)		>3É-3

ИСТОЧНИК: • ВСПЫШКА 0318 S09 E50 2B AR4026

168	1982 ДЕКАБРЬ	15	10		120
MET	ΠΡ >15	(0938	1216	)2,4 CYT	5,5
~~	ΠP >25	(0938	1123	>2,4 CYT	1,2
"	TIP >30	(0938	1123	>2,4 CYT	0,93
	TP >40	(0938	1123	)2,4 CYT	0,47
_~_	TP >90	(0938	1123	(2 CYT	0,08
IMP8	IIP 13.7-25.2	(18	16Д03/17Д13	>2 CYT	0,2/03
-"-	TP 20-40	₹18	(18-16Д03)/17Д13	)2 CYT	5E-2/6E-2
	TP 40-80	(18	(18/17113	>2 CYT	1.3E-2/3E-3
PHOM	กกพ	17	16Д07/17Д13	>1,5 CYT	0,4/1,5

ИСТОЧНИК: ● ВСПЫШКА 0150 S09 E24 2B AR4026

Ø BCTINIUKA 1620 S10 E15 1B AR4026

▲ SC 1710806

169	1982 ДЕКАБРЬ	17	20		120
MET	TIP >5	1952	2320	)1,9 CYT	180
-*-	RP >15	1952	2320	)1,9 CYT	38
_~-	ΠP >25	1952	2320	>1,9 CYT	12
	TP >30	1952	2320	)1,9 CYT	8,9
	TIP >40	1952	2320	>1,9 CYT	5,8
<b></b> "	TIP >90	1952	2320	1,7 CYT	1,8
	TP >600	1952	2320	1 CYT	0,03
IMP8	TIP 13,7-25,2	(18Д0З	18Д0З	>2 CYT	2,5
	TP 20-40	(18д03	18Д03	>2 CYT	0,8
_"-	TP 40-80	(18403	18403	>2 CYT	0,2
Бал	ΠP >150	-	(18Д07	7 4	>0,25
	∏P >250	_	(18807	7 4	>0,025
PNOM	TITU	(20	18Д01718Д14	)2 CYT	1,9/1,6
H13,14	TIP >25			non.	18

ИСТОЧНИК: • ВСПЫШКА 1820 S07 W20 3B AR4025

[@] BCTHWKA 1810822 S10 W20 1B AR4026

[▲] SC 19A0254,2220

170	1982 ДЕКАБРЬ	19	18		120
MET	IIP >5	1753	2355	⟩5,1 CYT	173
	NP >15	1753	2355	3,2 CYT	42
	ΠP >25	1753	2355	2,8 CYT	10,4
	11P >30	1753	2355	2,5 CYT	8,4
	IIP >40	1753	2355	2,2 CYT	4
-"-	HP >90	1753	2355	1,2 CYT	0,51
IMP8	NP 13,7-25,2	18	20Д03/20Д0В	>5 CYT	2/2,5
	ΠP 20-40	18	20Д03/20Д0В	5 CYT	07/0,7
-"-	ΠP 40-B0	18	20Д02	5 CYT	0,14
FHOM	TITTE	(20	>20Д02	>2 CYT	2
EH13,14	∏P >25			-	430

( YFOX SEMNY-CONHUE-BEH13,14 PABEH 45° W)

источник: BCIINIIKA 1508 N10 W75 1B AR4022

- ♦ ВСПЫШЕЧНАЯ АКТИВНОСТЬ ОБЛАСТЕЙ AR4025,4026
- ВСПЫШКА 18Д1504 S10 W21 2B AR4026 Ò
- △ SC 2220

171	1982 ДЕКАБРЬ	25	10		220
MET	∏P >5 -″-	1001	26A(05-10)/27A(02-07)/ /27A(11-15)	)6,6 CYT	12/180/ /970
-"- "-	ΠΡ_>15 	1001	26B(05-10)/27B(02-07)/ /27B(11-15)	6,6 CYT	2,3/17/ /97
-"- -"-	∏P_>25	1001	26H(02-08)/27H(02-07)/ /27H(11-15)	5,8 CYT	0,43/2,4/ /13
-"- "-	ΠΡ >30 -″-	1001	26A(00-08)/27A(02-07)/ /27A(13-14)	4,5 CYT	0,3/2,1/ /10
"-	∏P_>40 _~_	1001	26Д(00-08)/26Д22-27Д07/ /27Д(13-14)	3,5 CYT	0,18/0,75/ /2,5
_"_ IMP8	NF )90 NP 13,7-25,2	1001	22-26Д04/26Д(18-20) 26Д08/27Д00/27Д13	2,5 CYT >6 CYT	0,03/0,14 0,08/0,8/9
	IIP 20-40	12	27Д00/27Д13	<b>&gt;6 CYT</b>	0,2/2
_"_	NP 40-80	12	27月00/27月13	>6 CYT	0,025/0,13
PHOM	nnw	26114	278(04-07)/27814/27823	3.1 CYT	1.0/4,0/3.2

- 10743 S14 E61 1B AR4039
- @ BCHNUKA 26,00011 S12 E23 1N AR4033
- SC 2780715

172	1983 ЯНВАРЬ	<b>0</b> 5	12		E331 <b>0</b>
MET	BP >5∗	1228	1413	>26 4	1,44E+4
	NP >15*	1228	1319	<b>≥26 4</b>	4,3E+2
^_	RP >25*	1228	1228	25 4	1,46E+2
"	IIP.>30*	1228	1228	25 4	1,32E+2
	IIF 40*	1228	1228	11 4	8,8E+1
"	NP >90*	1228	1228	8,5 4	6,6
	IIF >600*	1228	1228	2 4	0,04
IMP8	TP 20-40	}15	(61106	)1 CYT	>2,5E-3
	IIF 40-80	>15	(22	)1 CYT	>7E-4
PWOM	1111111	14	15	1 CYT	0,5

MOTOHHUK: D ANTHEHAR OFFICE AR4033 2 CYT 3A W-JUMPON * ВОЗМОЖЕН ВКЛАД ЭЛЕКТРОНОВ С Е >2-10 МЭВ

		. 16			
173	1983 ЯНВАРЬ (	96	. 15		100
MET	ΠΡ >5*	1519	1707	>2,2 CYT	3,8E+1
<b>-</b> "-	RP >15*	1519	1707	28 4	1,0E+1
_"-	11P >25*	1519	1707	26	3,0
	IIP >30×	1519	1707	18 4	2,6
-"-	∏P >40×	1519	1707	13 4	1,66
-"-	IIP >90*	1519	1707	10 4	0,22
IMPB	TP 20-40	>15	(7 <b>30</b> 8	3 CYT	8,0E-3
-"	IIP 40-80	>15	(7 <b>8</b> 08	3 СУТ	1,3E-3
	источник: 0		R OBJACTE AR403		MEOM
	* ВОЗМОЖЕН ВІ	клад элект	PQHOB C E >2-10	МЭВ	
174	1983 ФЕВРАЛЬ	03	<b>0</b> 7		220
MET	TIP >5	0719	0812/4X(08-18)	7,7 CYT	16,2/960
_~_	NP >15	0719	<b>0812/40759</b>	3,6 CYT	2,3/48
	ΠP >25	0719	0812/4A0759	2,7 CYT	0,62/7,0
	TP >30	0719	0719/4B0759	2,6 CYT	0,38/5,4
	NP >40	0629	0719/4H0706	1,8 CYT	0,36/1,74
-~-	NP >90	0629	0719/4B0616	1,6 CYT	0,04/0,052
B9MI	RP 13,7-25,2	(07	(4Д0В	>7 CYT	>2,8
"	NF 20-40	(07	(4)08	7 CYT	<b>&gt;0,3</b> 5
-"-	TP 40-80	(07	(4Д0В	7 CYT	)0,02
PNOM	MUM	11	22/ <b>4Д0</b> 8/4Д16	2,2 CYT	0,7/3,6/3,5
	источник:	BCTIMMKA SC 4A16	4 <b>0541 S17 W07 2B</b> 515	AR4077	
			11		E0300
175	1983 MAPT 10				
175 MET		1038	1312	>14 4	0,98
MET	ΠΡ >15*	1038	1312 1312	)14 Y	
MET	ΠΡ >15* ΠΡ >25*	1038	1312	)14	0,98 0,26 0,16
MET	NP >15* NP >25* NP >30*	1038 1038	1312 1312	14	0,26 0,16
MET	ΠΡ >15* ΠΡ >25*	1038	1312	14 4	0,26

ИСТОЧНИКІ © ВСПЫШКА 0820 S24 W55 1N AR4104 0820 S33 W65 1-

# * ВОЗМОЖЕН ВКЛАД ЭЛЕКТРОНОВ C E >2-10 МЭВ

176	1983 ANPEAL 1	 5	>07		[1]10
MET	™ >15	>0725	1834	2,8 CYT	5,04
	RP >25	>0725	1557	1,8 CYT	1,32
	IIP >30	>0725	1557	1,7 CYT	1,30
	RP >40	>0725	1557	1,2 CYT	1,12
	NF >90	0725	1325	1 CYT	0,06
IMP8	NP 13,7-25,2	(12	16403	>2 CYT	8,0E-2
-,"-	RP 20-40	(12	16403	>2 CYT	)2,5E-2
	IIF 40-80	(12	. 20	>2 CYT	7,0E-3
PHOM	ti nw	(14	16/16 <b>Д0</b> 5	1 CYT	0,5/0,5

177	1983 MAW 12		03		00[0]
MET	ΠΡ >15*	0315	0549	22 Y	1,61
-"-	∏P >25¥	<b>0315</b>	0549	15 4	0,44
	NP >30*	0315	0549	15 4	0.26
	TP )40*	0315	0549	6 <b>4</b>	0,20
IMP8	RP 13,7-25,2	03	08	>3 CYT	3.0E-2
<b>"</b> -	TP 20-40	-			
	TP 40-80	-			

## ИСТОЧНИК: • ВСПЫШКА 0219 S30 E15 2B AR4171

## * ВОЗМОЖЕН ВКЛАД ЭЛЕКТРОНОВ C E > 2-10 МЭВ

178	1983 MAN 15		10		110
MET	୩P >15	<b>0</b> 939	1122	)2 <b>0</b> 4	5,96
	ηP >25	1032	1122	10 Y	0,56
	NP >30	1032	1122	94	0,48
"-	TP >40	1032	1122	7 4	0.34
IMP8	NP 13,7-25,2	(15	(15		3,5 E-2
P'HOM	TITU	10	12	1,3 CYT	0,7

# ИСТОЧНИК: ● ВСПЫШКА 0839 S12 W82 1B AR4173

179	1983 ИЮНЬ 15		04	-	110
MET	ΠP >15	<b>(11</b>	15Д1830	4 CYT	12,4
-"-	ΠP >25	(11	15Д1830	3,2 CYT	3,8
~~~	TIP >30	₹11	15Д1830	3 CYT	3.0
-"-	TP >40	<11	15Д1830	3 CYT	1.8
-"-	ΠF >90	(11	15/1312	1,2 CYT	0.24
IMP8	TIP 13,7-25,2	04	(24	>3 CYT	0.35
-"-	TP 20-40	04	(24	>3 CYT	>0.1
-"-	TIP 49-80	04	(24	>3 CYT	>0.03
PNOM	TITU	04	20	2 CYT	0.75

ИСТОЧНИК: О ОБЛАСТЬ АК4201 З СУТ ЗА W-ЛИМБОМ РАДИОВСПЛЕСК II ТИПА 0309 БЕЗ \mathbf{H}_{CC} ВСПЫШКИ

180	1983 ИЮНЬ 19		>00		. 000
MET IMP8 -~-	TIP)15 TIP 13,7-25,2 TIP 20-40 TIP 40-80	<08 >00 >00 >00) 19Д23 (20Д02 (20Д02 (20Д02	5 CYT >10 CYT >10 CYT >10 CYT	>1,28 >3,5E-2 >7,0E-3 >6,0E-4

ИСТОЧНИК: О ОБЛАСТЬ AR4201 НА НЕВИДИМОЙ ПОЛУСФЕРЕ РАДИОВСПЛЕСК 0256, ВОЗМОЖНО, II ТИПА

	1984 ЯНВАРЬ 3	31	13 1,0055 1812 1631 1631 1631 18 18 18 18 -0710 N18 W54 11		000
MET	NP >5	0855	1Д0055)4 CYT	9,6
~	IIP >15	1309	1812	1,9 CYT 1,7 CYT	1,24
 "	ΠP >25	1309	1631	1,7 CYT	.0,26
	TIP >30	1309	1631	1,3 CYT	0,22
~	NP)40	1309	1631	(15 4 3 CYT	0,14
TMPR	TP 13.7-25.2	-	18	3 CYT	7,5E-2
	TP 20-40	_	18	. = .	1,0E-2
	MUTUAHNK. W	BCTIANIKA.	18 - 0710 N18 W54 11 -(0705 N08 W48 S1 -(0711 N11 W24 S1	R AR4397	
	ACTO HOUSE	Denomina	(0705 NOR WAR SI	N ΔR4400	
		Į.	-(0705 R05 W45 SI	N ΔR4399	
	источник: О	สาแหนาส	1254 NIA NAO 18	Δ64397	
	0	ВСПЫШКА	1256 N16 W60 1B 1Д1928 N12 W22 S	SF AR4403	
182	1984 ФЕВРАЛЬ	16	>06		(2)13
MET	TP 15	\0544	/141R	\2 CYT	>216
	ND 115	10546	(1418	12 CYT	>58
	TIP 125	10546	/1418	72 C/T	114.0
	IIP \70	70576 \A544	(1418	12 CYT)14 A
	MA VAN	74544 44544	/141B	72 CYT)14,6)11,4
	111 /3V	70340	(1410)1.7 CYT)4
	110 /40A	70544	71A10	71,7 C/1)0,0B
EV P	11C /0VØ	/VJ40	\17807 (17807	70 T	
рил _ "	NF /07	_	\1/ДV/ /17П@7	/1 C/1	0,4
	HF 7100		11/40/ /17807	/1 C/ i	0,2
	ML 7120		(1/Д0/	· /1 L/1	0,06
	ur >1/0	/4C	(1/Д0/	71 U/1	0,04
	nr >15.7-25.2	(12	12	72 G7 I	6
TULB	TT: 14 DT:	0010 ==		/O II	OCV OT
HM TUL.R	NP >1 FB	0910 5	0915 5	(2 4 1.9 CYT	95% FE 0.8
HM PNOM	NP >1 PB NNW NCTOYHNK: #	0910 5 10 ОБЛАСТЬ	(1418 (1418 (1418 (1418 (1418 (1418 (1418 (1418 (17,007 (17,007 (17,007 (17,007 12 0915 5 12	(2 Ч 1,9 СУТ А W-ЛИМБОМ	0.8
HM PHOM	ΠΡ >1 ΓΒ ΠΠШ ИСТОЧНИК: ■	0910 5 10 ОБЛАСТЬ РАДИОВСІ	0915 5 12 AR4408 3 СУТ Э ПЛЕСКИ II,IV ТИП	(2 Ч 1,9 СУТ А W-ЛИМБОМ А 0858 БЕЗ Н _Q -В	0.8
183	источник: ж 1984 ФЕВРАЛЬ	ОБЛАСТЬ РАДИОВСІ 18	АК4408 3 СУТ 3 ПЛЕСКИ II,IV ТИП 03	А W-ЛИМБОМ А 0858 БЕЗ Н _α -В	0.8 СПЫШКИ 110
183 MET	источник: ж 1984 ФЕВРАЛЬ	ОБЛАСТЬ РАДИОВСІ 18	АК4408 3 СУТ 3 ПЛЕСКИ II,IV ТИП 03	А W-ЛИМБОМ А 0858 БЕЗ Н _α -В	0.8 СПЫШКИ 110
183 MET	источник: ж 1984 ФЕВРАЛЬ	ОБЛАСТЬ РАДИОВСІ 18	АК4408 3 СУТ 3 ПЛЕСКИ II,IV ТИП 03	А W-ЛИМБОМ А 0858 БЕЗ Н _α -В	0.8 СПЫШКИ 110
183 MET	источник: ж 1984 ФЕВРАЛЬ	ОБЛАСТЬ РАДИОВСІ 18	АК4408 З СУТ З ПЛЕСКИ II,IV ТИП 03	А W-ЛИМБОМ А 0858 БЕЗ Н _α -В	0.8 СПЫШКИ 110
183 MET	источник: ж 1984 ФЕВРАЛЬ	ОБЛАСТЬ РАДИОВСІ 18	АК4408 З СУТ З ПЛЕСКИ II,IV ТИП 03	А W-ЛИМБОМ А 0858 БЕЗ Н _α -В	0.8 СПЫШКИ 110
183 MET	источник: ж 1984 ФЕВРАЛЬ	ОБЛАСТЬ РАДИОВСІ 18	АК4408 З СУТ З ПЛЕСКИ II,IV ТИП 03	А W-ЛИМБОМ А 0858 БЕЗ Н _α -В	0.8 СПЫШКИ 110
183 MET 	источник: ж 1984 ФЕВРАЛЬ	ОБЛАСТЬ РАДИОВСІ 18	АК4408 З СУТ З ПЛЕСКИ II,IV ТИП 03	А W-ЛИМБОМ А 0858 БЕЗ Н _α -В	0.8 СПЫШКИ 110
183 MET 	источник: ж 1984 ФЕВРАЛЬ	ОБЛАСТЬ РАДИОВСІ 18	АК4408 З СУТ З ПЛЕСКИ II,IV ТИП 03	А W-ЛИМБОМ А 0858 БЕЗ Н _α -В	0.8 СПЫШКИ 110
183 МЕТ ———————————————————————————————————	1984 ФЕВРАЛЬ ПР >5 ПР >15 ПР >15 ПР >25 ПР >30 ПР >40 ПР >90 ППШ ИСТОЧНИК:	05JACTЬ FAMODE: 18 0324 0324 0324 0324 0324 0323 23 BCIINIMKA	АК4408 З СУТ З ПЛЕСКИ II,IV ТИП	A W-JMM50M A 0858 FE3 H _Q -BI >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT 22 4 >1,5 CYT	0.8 СПЫШКИ 110
183 МЕТ ———————————————————————————————————	1984 ФЕВРАЛЬ ПР >5 ПР >15 ПР >25 ПР >25 ПР >30 ПР >40 ПР >90 ППШ ИСТОЧНИК: •	ОБЛАСТЬ РАДИОВСІ 18 0324 0324 0324 0324 0324 0324 0323 23 ВСПЫШКА	AR4408 3 CYT 3. IJAECKU II,IV TUII. 03 19A20-20A02 19A19-20A02 22-19A20 16-19A20 16-22 14-22 20A10 17A2226 N17 E81	A W-JMM50M A 0058 FE3 H _Q -E4 >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT 22,4 CYT 22,4 CYT 21,5 CYT	0.8 Стышки 110 82 6,8 1,1 0,9 0,52 0,20 0,9
183 МЕТ ———————————————————————————————————	1984 ФЕВРАЛЬ ПР >5 ПР >15 ПР >15 ПР >25 ПР >30 ПР >40 ПР >90 ППШ ИСТОЧНИК: Ф	ОБЛАСТЬ РАДИОБСІ 18 0324 0324 0324 0324 0324 0323 23 ВСПЫШКА	AR4408 3 CYT 3: IJAECKU II,IV TUII: 03 19A20-20A02 19A19-20A02 22-19A20 16-19A20 16-22 14-22 20A10 17A2226 N17 E81	A W-JMM5QM A 0858 FE3 H _Q -BI >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT 22 4 >1,5 CYT	0.8 СПЫШКИ 110 82 6,8 1,1 0,9 0,52 0,20 0,9
183 МЕТ ———————————————————————————————————	1984 ФЕВРАЛЬ ПР >5 ПР >15 ПР >15 ПР >25 ПР >30 ПР >40 ПР >90 ППШ ИСТОЧНИК: Ф	ОБЛАСТЬ РАДИОБСІ 18 0324 0324 0324 0324 0324 0323 23 ВСПЫШКА	AR4408 3 CYT 3: IJAECKU II,IV TUII: 03 19A20-20A02 19A19-20A02 22-19A20 16-19A20 16-22 14-22 20A10 17A2226 N17 E81	A W-JMM5QM A 0858 FE3 H _Q -BI >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT 22 4 >1,5 CYT	0.8 СПЫШКИ 110 82 6,8 1,1 0,9 0,52 0,20 0,9
183 МЕТ ———————————————————————————————————	1984 ФЕВРАЛЬ ПР >5 ПР >15 ПР >15 ПР >25 ПР >30 ПР >40 ПР >90 ППШ ИСТОЧНИК: Ф	ОБЛАСТЬ РАДИОБСІ 18 0324 0324 0324 0324 0324 0323 23 ВСПЫШКА	AR4408 3 CYT 3: IJAECKU II,IV TUII: 03 19A20-20A02 19A19-20A02 22-19A20 16-19A20 16-22 14-22 20A10 17A2226 N17 E81	A W-JMM5QM A 0858 FE3 H _Q -BI >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT 22 4 >1,5 CYT	0.8 СПЫШКИ 110 82 6,8 1,1 0,9 0,52 0,20 0,9
183 МЕТ ———————————————————————————————————	1984 ФЕВРАЛЬ ПР >5 ПР >15 ПР >15 ПР >25 ПР >30 ПР >40 ПР >90 ППШ ИСТОЧНИК: Ф	ОБЛАСТЬ РАДИОБСІ 18 0324 0324 0324 0324 0324 0323 23 ВСПЫШКА	AR4408 3 CYT 3: IJAECKU II,IV TUII: 03 19A20-20A02 19A19-20A02 22-19A20 16-19A20 16-22 14-22 20A10 17A2226 N17 E81	A W-JMM5QM A 0858 FE3 H _Q -BI >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT 22 4 >1,5 CYT	0.8 СПЫШКИ 110 82 6,8 1,1 0,9 0,52 0,20 0,9
183 МЕТ ———————————————————————————————————	1984 ФЕВРАЛЬ ПР >5 ПР >15 ПР >15 ПР >25 ПР >30 ПР >40 ПР >90 ППШ ИСТОЧНИК: Ф	ОБЛАСТЬ РАДИОБСІ 18 0324 0324 0324 0324 0324 0323 23 ВСПЫШКА	AR4408 3 CYT 3: IJAECKU II,IV TUII: 03 19A20-20A02 19A19-20A02 22-19A20 16-19A20 16-22 14-22 20A10 17A2226 N17 E81	A W-JMM5QM A 0858 FE3 H _Q -BI >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT 22 4 >1,5 CYT	0.8 СПЫШКИ 110 82 6,8 1,1 0,9 0,52 0,20 0,9
183 МЕТ ———————————————————————————————————	1984 ФЕВРАЛЬ ПР >5 ПР >15 ПР >15 ПР >25 ПР >30 ПР >40 ПР >90 ППШ ИСТОЧНИК: Ф	ОБЛАСТЬ РАДИОБСІ 18 0324 0324 0324 0324 0324 0323 23 ВСПЫШКА	AR4408 3 CYT 3: IJAECKU II,IV TUII: 03 19A20-20A02 19A19-20A02 22-19A20 16-19A20 16-22 14-22 20A10 17A2226 N17 E81	A W-JMM5QM A 0858 FE3 H _Q -BI >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT 22 4 >1,5 CYT	0.8 СПЫШКИ 110 82 6,8 1,1 0,9 0,52 0,20 0,9
183 МЕТ ———————————————————————————————————	1984 ФЕВРАЛЬ ПР >5 ПР >15 ПР >15 ПР >25 ПР >30 ПР >40 ПР >90 ППШ ИСТОЧНИК: Ф	ОБЛАСТЬ РАДИОБСІ 18 0324 0324 0324 0324 0324 0323 23 ВСПЫШКА	AR4408 3 CYT 3: IJAECKU II,IV TUII: 03 19A20-20A02 19A19-20A02 22-19A20 16-19A20 16-22 14-22 20A10 17A2226 N17 E81	A W-JMM5QM A 0858 FE3 H _Q -BI >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT 22 4 >1,5 CYT	0.8 СПЫШКИ 110 82 6,8 1,1 0,9 0,52 0,20 0,9
183 МЕТ ———————————————————————————————————	1984 ФЕВРАЛЬ ПР >5 ПР >15 ПР >15 ПР >25 ПР >30 ПР >40 ПР >90 ППШ ИСТОЧНИК: Ф	ОБЛАСТЬ РАДИОБСІ 18 0324 0324 0324 0324 0324 0323 23 ВСПЫШКА	AR4408 3 CYT 3. IJAECKU II,IV TUII. 03 19A20-20A02 19A19-20A02 22-19A20 16-19A20 16-22 14-22 20A10 17A2226 N17 E81	A W-JMM5QM A 0858 FE3 H _Q -BI >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT 22 4 >1,5 CYT	0.8 СПЫШКИ 110 82 6,8 1,1 0,9 0,52 0,20 0,9
183 МЕТ ———————————————————————————————————	ИСТОЧНИК: ■ 1984 ФЕВРАЛЬ ПР >5 ПР >15 ПР >25 ПР >30 ПР >40 ПР >90 ППШ ИСТОЧНИК: ■ 1984 ФЕВРАЛЬ ПР >5 ПР >15 ПР >25 ПР >30 ПР >40 ПР +40 ПР +40 ПР +40 ПР +40 ПР +40 ПР +40	05JACTE PARIOBCI 18 0324 0324 0324 0324 0324 0323 23 BCITISHIKA 20 1256 1256 1256 1256 1256 1256	AR4408 3 CYT 3. IJAECKU II,IV TUII. 03 19A20-20A02 19A19-20A02 16-19A20 16-19A20 16-22 14-22 20A10 17A2226 N17 E81 13 20-21A08 22-21A08 22-21A08 21A(00-08) 21A(00-08) 21A(00-10) 21A(06-20) 21A09 AR4408 HA HEBUA EHUE IIO AUCKY OF	A W-JMM50M A 0858 FE3 H _A -BI >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT >2,4 CYT 22 Y >1,5 CYT 1N AR4421 >9,6 CYT >4,6 CYT >3,6 CYT >3,6 CYT 2,4 CYT 7 CYT >3,5 CYT	0.8 СПЫШКИ 110 82 6,8 1,1 0,9 0,52 0,20 0,9

185	1984 MAPT 10		21		010
IMP8	ΠΡ 13,7-25,2	⟨∅₿	13Д(20-24)	>4 CYT	2,5E-1
-"-	IIP 20~40	. (08	13Д20)4 CYT	6,5E-2
	TIF 40-80	₹98	13Д20)4 CYT	4,5E-3
P'HOM	TITTEN	(00	(24)1 CYT	>0.5

ИСТОЧНИК: О АКТИВНОСТЬ НА НЕВИДИМОЙ ПОЛУСФЕРЕ СОЛНЦА

186	1984 MAPT 14		04		110
MET	.πP >5		(1317	>8,5 CYT	>68
-"-	ΠP >15		(1317	>3,7 CYT	>14,8
-"-	ΠP >25		(1317	>2,7 CYT	>3.94
-"-	NP >30		(1317	>2,4 CYT	>3,28
	TIP >40		(1317	>1.5 CYT	>1.44
	NP >90		(1317	>11 4	>0.24
IMPB	TF 13,7-25,2	(10	(10	>B CYT	2.5
-"-	IIP 20-40	(10	(10	8 CYT	0.4
	IIP 40-80	(10	(10	6 CYT	7,0E-2
ВАЛ	ΠΡ̀ >150		((06-07)		0.33
PHOM	שוווו	(04	06	>3.9 CYT	1,4

MCTOYHMK: ● BCTMWKA 0315 S11 W43 2B AR4433

187	1984 АПРЕЛЬ	25	96		340
MET	ΠΡ >5	(0612	>2030	**************************************	>672/
~	NP >15	(0612	>2030	-)146/
"	NP >25	0632 ·	2259/26 月1348	12 CYT	62/422
	ΠP >30	0632	2259/26 Д134 В	11 CYT	46/184
	TYP >40	0 632	2259/26月1348	7,8 CYT	22/88
-"-	NP >90	0632	2259/26A1348	3,8 CYT	1,76/4,2
	IIP >600	0632	2208/26月1348	2 CYT	0,02/0,06
BAMI	NP 13,7-25,2	12	26314	17 CYT	50
	TIP 20-40	12	(26814)	17 CYT	5.5
	TP 40-80	12	(26114)	17 CYT	0.9
БАЛ	IIP >150	(26月0630	26B(0830-09)	-	0.3
P'MOM	nnw	12	23/26115	8.3 CYT	3.0/>15

 ИСТОЧНИК:
 •
 ВСТЫШКА
 24Д2356
 S11
 E45
 3B
 AR4474

 •
 ВСПЫШКА
 24Д0259
 S08
 E56
 2N
 AR4474

188	1984 MAN 05		⟨20		000
IMP8 	NP 13,7-25,2 NP 20-40 NP 40-80	(20 (20 (20	22 (20 (20)1 CYT 1 CYT 1 CYT	6,0E-2 >1,5E-2 >1,8E-3

ИСТОЧНИК: O ВСПЫШКА 1109 S13 W68 1B AR4476 ВСПЫШКА 1808 S13 W90 M7 AR4474

189	1984 MAP 21		00	. NOTE TO BE STANK OFFICE AND ADDRESS OF A	010
	MP 13,7-25,2	99 99 99	8 7 6	(1 CYT	5,0E-2
-~-	TP 20-40	00	7	(1 CYT	8,0E-3 1,0E-3
-"-	TP 40-80	99	6		
PHOM	TITU	03	0,5	1 CYT	0,5
	источника о	BCTIMIKA	r>0215 0217 0220 Se		
			- 0237 0247 0258 NO	9 W90 - A	R4481
		***************************************	L 0258 0309 0322 S1	0 E64 SN A	R4494
	0	BCHMBKA	20A2218 S07 E53 2	2B AR4492	
190			. (20	-	016
IMPB	TP 13,7-25,2 TP 20-40 TP 40-80	(20	(24Д15 (24Д15 (24Д15	3 CYT	8,0E-2 8,0E-3
	IIP 20-40	(24	(24Д15	3 CYT	
	IIP 40-80	(24	(24Д15	3 CYT	1E-4
PHON	11116	24	24月08/24月15	2,1 CYT	0,5/1,2
			LEHNE ОБЛАСТИ AR4492		
	•	SC 24X	A (22Д1501 S09 E26 2 9845	2B AR4492	
191	1984 MAN 31	Ma May Min and 1954 ago ago ago a	14		916
TWLR	WP 13,7-25,2	(1Д10	<1310 <1310 <1310		6E-2
	IIP 20-40	<1Д10	(1Д10	>3 CYT	7E-3
-"-	TP 40-80	(1 810	<1Д10)3 CYT 10 4	4E-4
PHOM	ПР 13,7-25,2 ПР 20-40 ПР 40-80 ППШ	1350	1420	10 4	0,6
		АКТИВНА РАДИОВО	АЯ ОБЛАСТЬ АК4492 1 СПЛЕСК II ТИПА В 114		MBOM
	n inns visit also nice differency time ning man analysis ands and 1904 1909	(Harlia)	ГРУЛЬ ОТСУТСТВОВАЛ)		form once there was noted that were not then seen man than the late. We
192	1985 ЯНВАРЬ 2	2	90		010
MET	11P >5	0001		3,7 CYT	12,2
	RP >15	0001	>0327	3 CYT	>3,4
-"-	ΠP >25	0001 0001	>0327	1,8 CYT)1,2
	NP >30	0001	A517	2,5 CYT	1,64
	NP >40 NP >90	0001	0 517	1,3 CYT	0,9
_~-	NP >90	0001	0426	8 4	0,28
IMPB	WP 13,7-25,2	(03	07	1,3 CYT 8 4 >5 CYT 5 CYT	2,5E-1
	WD 00 40	(03	07	5 CYT	7,0E-2
-~-	IIP 20-40				4 05 0
- <i>"</i> -	IIP 20-40 IIP 40-80	⟨03	0 7	5 CYT	1,8E-2
 РИОМ	TP >90 TP 13,7-25,2 TP 20-40 TP 40-80	693 63	07 0 7	5 CYT 2 CYT	0,5
PHOM	******		9 7	2 CYT	
	источник:	BCIIMUK SC 23A	97 A 2112308 810 W40 1	2 CYT	0,5
193	ИСТОЧНИК: ● ▲ 1985 АПРЕЛЬ 2	BCIIMUK SC 23A	97 A 2112308 810 W40 1 0805	2 CYT N A4617	220
193	ИСТОЧНИК: ● ▲ 1985 АПРЕЛЬ 2	BCIIMUK SC 23A	97 A 2112308 810 W40 1 0805	2 CYT N A4617	9,5 220 169/556
193	ИСТОЧНИК: ● ▲ 1985 АПРЕЛЬ 2	BCIIMUK SC 23A	97 A 2112308 810 W40 1 0805	2 CYT N A4617	220 160/556 14,8/30
193	ИСТОЧНИК: ● ▲ 1985 АПРЕЛЬ 2	BCIIMUK SC 23A	97 A 2112308 810 W40 1 0805	2 CYT N A4617	160/556 14,8/30 3,4/2,7
193	ИСТОЧНИК: ● ▲ 1985 АПРЕЛЬ 2	BCIIMUK SC 23A	97 A 2112308 810 W40 1 0805	2 CYT N A4617	160/556 14,8/30 3,4/2,7 3,0/2,6
193	ИСТОЧНИК: ● ▲ 1985 АПРЕЛЬ 2	BCIIMUK SC 23A	97 A 2112308 810 W40 1 0805	2 CYT N A4617	160/556 14,8/30 3,4/2,7 3,0/2,6 1,64/0,96
193	ИСТОЧНИК: ● ▲ 1985 АПРЕЛЬ 2	BCIIMUK SC 23A	97 A 2112308 810 W40 1 0805	2 CYT N A4617	160/556 14,8/30 3,4/2,7 3,0/2,6 1,64/0,96
193	ИСТОЧНИК: ● ▲ 1985 АПРЕЛЬ 2	BCTIMUK SC 23A	07 A 21 <u>1</u> 2308 810 W40 11 0805	2 CYT N A4617	160/556 14,8/30 3,4/2,7 3,0/2,6 1,64/0,96

			- 74 -		
~	NP 20-40 NP 40-80	(11	25 Д 06/26 Д 03 25 Д 06/26 Д 03	6 CYT	0,17/0,5 1,5E-2/1,2E-2
PHOM	NNE	10 (17	?-22)/25Д(12-17)/ /26Д 0 5		1,0/2,0/
	источник.	BCITHINKA	(0850 N05 E24 2B	AR4647	/3,8
	1985 ИЮЛЬ 03		01	ikkin elife kelit urbe uppr man 1516 ochs dipt alse 1516 dans und 16	000
MET	TIP >5	480015		1 A CVT	A 7/
~	NP }15	410015	4Д1402 4Д1402 (4Д03-04)/4Д09 (4Д03-04)/4Д09 (4Д03-04)/4Д09	1.3 CYT	0,76 0,24
RP010	NP \15 6-19	01	(4103-04)/4109	6 CYT	1,3/4
"	10-30	01 °	(4Д03-04)/4Д09	6 CYT	0,7/1,6
-"-	30-60	01	(4Д03-04)/4Д09	6 CYT	0,05/0,2
			/4809		/0,015
IWE	NP 13,7-25,2 NP 20-40	20	4Д02/4Д12	4 CYT	2,5E-2/5E-2
"	IIP 20-40	20	4Д02/4Д12	4 CYT	8E-3/1E-2
	TP 40-80	20	4 月 02/4 月1 2	4 CYT	7E-4/1E-3
		ВСПЫШКА SC 4Д046	2) 2056 S14 E57 2	B AR4671	
	1985 ИЮЛЬ 09		02	***	120
MET	NP >15	0231	0415	3,5 CYT	40
	NP >25	0231	0415	7 4 007	8
*	IIP >30	0231 0231	0415	3,4 C/T	7
	NP >40	0231	0231	2,4 CYT	4,6
*	NP >90	0231	0231	1,7 CYT	2,2
IIFO10	6-19	02	04	3 CYT	1,6E+2
-"-	10-30	02 02 02	04	3 CYT	8E+1
	30-60	Ø2	03	3 СУТ	1,6E+1
	30-60 60-70	02	03		1,2
IMP8	IIP 13.7~25.2	(03	03	>3 CYT	3
-"-	IIP 20-40	(03	03	4 CYT 3 CYT	1,2
	NF 40-80	(03	03		0,18
FWOM	TITIU	(02	0 5)1,2 CYT	1,8
	источник:	BCTHWKA SC 11 3 16	0133 S13 W25 1N 027	AR4671	
196	1985 ИЮЛЬ 17		04		000
MET	IIP >15	0357	0634	2,2 CYT	3,6
	IIF >25	0357	0634	1,9 CYT	1.52
"	IIF >30	0357 0357	0634	1,3 CYT	1,14
"	NP >40	Ø357	0634	1,1 CYT	1,02
″ .	IIF >90	0357	0634	1 CYT	0,6
IIF010	6÷19	04	09	D3 CYT	1,7
	10-30	04	09	3 CYT	1,2
	30-60	04	07/09	>3 CYT	4E-1/4,8E-1
*	60-70	üΔ	06/09	>3 CYT	7,6E-2/7,5E-2
TMF8	WP 13,7-25,2	04	09/11	>3 CYT	2,8E-2/4E-2
	11F 20~40	04	80)3 CYT	1,5E-2
	IIP 40-80	04	07	>3 CYT	8E-3

моэмик- ω ас түр с 1764яа атракао канчитаа имшипри- ω 3 жинротои имшипри- ω еза ссео апитіі уракпочомда

197	1985 NDAL 20		03		900
MET	ΠΡ >15	9396	0543	3 CYT	1,7
~	MP >25	0306	0543	2,9 CYT	0,54
-"-	NP >30	9396	0543	2,8 CYT	0.40
	TIP >40	0306	0543	1.8 CYT	0,30
RP010	6-19	93	07/12		6,5E-1/1,0
, -	10-30	0 3	06/12	-	4,9E-1/5,5E-1
	30-60	03	96		2,5E-1
	60-70		03		7E-2
IMP8	MP 13,7-25,2	93	0 7	5 CYT	2,5E-2
	TP 20-40	03	07	5 CYT	1,E-2
	TP 40-80	03	04	5 CYT	3E-3

источник: ОБЛАСТЬ AR4671 НА НЕВИДИМОЙ ПОЛУСФЕРЕ

SC 2211948

198	1986 ФЕВРАЛЬ	04	07	The sine was talk and sale some over one some som som som some	900
1MP8	ПР 13,7-25,2 ПР 20-40 ПР 40-80	97 97 9 7	>10/{24 >09/{24 /{24)1 CYT)1 CYT	>7/>4,0E-2 />1,0E-2 />1,0E-3

ИСТОЧНИК: ● ВСПЫШКА 3Д2037 S09 E27 1B AR4711

199	1986	ФЕВРАЛЬ	0 5	(04		000
MET	np >	5	(9497	1916)1,1 CYT	72
	TIP >	15	(0407	1916)1,1 CYT	2,3
	MP >	25	(0407	1916)1 CYT	0,44
	NP >	30	(0407	1916	>1 CYT	0.23

BCTIMBKA 410732 S04 E21 3B AR4711 источник: BCTIMUKA 481025 S03 E66 2N AR4713 0

BCTIMUKA (1234 S06 E04 2N AR4711

200	1986 ФЕВРАЛЬ	06	08		220
MET	MP >5	< 0 825	2117	>3 CYT	932
"	NP >15	('0825	2117)3 CYT	196
~	ΠP >25	0 825	2117	2,5 CYT	33,4
"	11P >30	0732	2117	1,5 CYT	29,2
_"	11P >40	0732	1608	1,5 CYT	8,8
	∏P >90	0732	1333	1 CYT	1,7
IMP8	TIP 13.7-25.2	(09	13/(7003	>1 CYT	0, 7/)2
"	IIP 20-40	(09	13/(7403	>1 CYT	0,2/>5
~ " _	NP 40-80	(09	13/(7Д03)1 CYT	0,07/10.1
PNOM	ITTU	09	12/21	>2,5 CYT	1,2/1,6

ВСПЫШКА 0618 S07 W02 2B AR4711 источник:

SC 1312

201	1986 ФЕВРАЛЬ	0 7	13		220
	11P >5	1442	1808		818
-*-	ΠP >15	1442	1808	-	164
"	RP >25	1442	1808	-	37
	TP >30 TP >40 TP >90 TP 13,7-25,2 TP 20-40 TP 40-80	1442 1535	1808	-	29
-"	TIP >40	1535	1808	-	15
	TP >90	1535	1808	. =	1,8
IMP8	TP 13,7-25,2	13)16)3 CYT	>4,3
-"-	NP 20-40	13	>16)3 CYT	>1,3
	TP 40-80	13	>16)3 CYT	>0,3
PUON	ULM	₹14	17/8405	2,5 CYT	2,2/1,9
	источник:	ВСПЫШКА	1011 S11 W21 2B	AR4711	
	1986 ФЕВРАЛЬ		>22	r med mile sine van sem mile kaal sein mile sine sine sine sand sand sein sine sine sine sand kaal sein sine s	(0)00
MET	DP 15	12134	(11,1133		>8,9
	NP >15	>2134	(11Д1133	-	>1,2 .
~_	IIP >25	>2134	(1121133	-	0,08
"	IIP >30	>2134	(1121133)3 CYT	>0,06
IMPB	NP 13,7-25,2	(24	(24))3 CYT	(1,2E-1)
	NP 20-40	(24	(24)	-	(5,0E-2)
	ПР >15 ПР >25 ПР >25 ПР >30 ПР 13,7-25,2 ПР 20-40 ПР 40-80 ИСТОЧНИК: @		(24) 2025 S01 W32 SB	AR4713	(1,2E-2)
	источник	ВСПЫШКА	2025 S01 W32 SB	AR4713	namang nga banasa ang min ana man ang manana sa mga n
203	ИСТОЧНИК: ©	ВСПЫШКА	2025 S01 W32 SB	e and their sint was well also take then you give also also one	220
203	ИСТОЧНИК: ©	ВСПЫШКА	2025 S01 W32 SB	e and their sint was well also take then you give also also one	220
203	ИСТОЧНИК: ©	ВСПЫШКА	2025 S01 W32 SB	e and their sint was well also take then you give also also one	220
203	ИСТОЧНИК: ©	ВСПЫШКА	2025 S01 W32 SB	e and their sint was well also take then you give also also one	220
203	ИСТОЧНИК: ©	ВСПЫШКА	2025 S01 W32 SB	e and their sint was well also take then you give also also one	220
203	ИСТОЧНИК: ©	ВСПЫШКА	2025 S01 W32 SB	e and their sint was well also take then you give also also one	220
203	ИСТОЧНИК: ©	ВСПЫШКА	2025 S01 W32 SB	e and their sint was well also take then you give also also one	220
203	ИСТОЧНИК: @ 1986 ФЕВРАЛЬ ПР >25 ПР >30 ПР >40 ПР >90 ПР 13,7-25,2 ППШ	14 (1216 (1216 (1216 (1216 (1216 (1216 (1216 (18 10 BCTISIUKA	2025 S01 W32 SB)2,5 CYT)2,5 CYT)1,5 CYT)14 4)3 CYT 4,5 CYT	220
203 МЕТ ———————————————————————————————————	ИСТОЧНИК: @ 1986 ФЕВРАЛЬ ПР >25 ПР >30 ПР >40 ПР >90 ПР 13,7-25,2 ППШ ИСТОЧНИК: ▲	14 (1216) (1216) (1	10 1824 1824 1824 1824 24 23/15,05/15,099 0909 N00 W78 1N 434, 16,11838)2,5 CYT)2,5 CYT)1,5 CYT)14 Ч)3 CYT 4,5 CYT AR4713	220 24 19,2 9,2 1,4 6 2,3/2,5/2,
203 МЕТ ———————————————————————————————————	ИСТОЧНИК: @ 1986 ФЕВРАЛЬ ПР >25 ПР >30 ПР >40 ПР >90 ПР 13,7-25,2 ППШ	14 (1216)(1216)(12))(12)(12)(12)(12)(12)(12)(12)(12)(1	10 1824 1824 1824 1824 23/15,05/15,09 0909 NOO W78 1N 434, 16,11838)2,5 CYT)2,5 CYT)1,5 CYT)14 Ч)3 CYT 4,5 CYT AR4713	220 24 19,2 9,2 1,4 6 2,3/2,5/2,
203 МЕТ ІМР8 РИОМ	ИСТОЧНИК: @ 1986 ФЕВРАЛЬ ПР >25 ПР >30 ПР >40 ПР >90 ПР 13,7-25,2 ППШ ИСТОЧНИК: 1986 ФЕВРАЛЬ ПР >25	14 (1216 (1216 (1216 (1216 (1216 (1216 (1216 (1216 (1216 (1217 10 BCTININKA SC 1421 17	10 1824 1824 1824 1824 23/15,05/15,09 0909 NOO W78 1N 434, 16,11838)2,5 CYT)2,5 CYT)1,5 CYT)14 Ч)3 CYT 4,5 CYT AR4713	220 24 19,2 9,2 1,4 6 2,3/2,5/2,
203 МЕТ ———————————————————————————————————	ИСТОЧНИК: @ 1986 ФЕВРАЛЬ ПР >25 ПР >30 ПР >40 ПР >90 ПР 13,7-25,2 ППШ ИСТОЧНИК: 1986 ФЕВРАЛЬ ПР >25	14 (1216)(1216)(12))(12)(12)(12)(12)(12)(12)(12)(12)(1	10 1824 1824 1824 1824 23/15,05/15,09 0909 NOO W78 1N 434, 16,11838)2,5 CYT)2,5 CYT)1,5 CYT)14 Ч)3 CYT 4,5 CYT AR4713	220 24 19,2 9,2 1,4 6 2,3/2,5/2,
203 МЕТ ———————————————————————————————————	ИСТОЧНИК: @ 1986 ФЕВРАЛЬ ПР >25 ПР >30 ПР >40 ПР >90 ПР 13,7-25,2 ППШ ИСТОЧНИК: 1986 ФЕВРАЛЬ ПР >25	14 (1216)(1216)(12))(12)(12)(12)(12)(12)(12)(12)(12)(1	10 1824 1824 1824 1824 24 23/15,05/15,09 9999 N00 W78 1N 434, 16,1838)2,5 CYT)2,5 CYT)1,5 CYT)14 Ч)3 CYT 4,5 CYT AR4713	226 24 19,2 9,2 1,4 6 2,3/2,5/2, 100 3,6 1,4 6,4E-1
203 МЕТ ———————————————————————————————————	ИСТОЧНИК: @ 1986 ФЕВРАЛЬ ПР >25 ПР >30 ПР >40 ПР >90 ПР 13,7-25,2 ППШ ИСТОЧНИК: 1986 ФЕВРАЛЬ ПР >25	14 (1216)(1216)(12))(12)(12)(12)(12)(12)(12)(12)(12)(1	10 1824 1824 1824 1824 23/15705/15709 0909 N00 W78 1N 434, 1671838)2,5 CYT)2,5 CYT)1,5 CYT)14 Ч)3 CYT 4,5 CYT AR4713	220 24 19,2 9,2 1,4 6 2,3/2,5/2, 100 3,6 1,4 6,4E-1 (3,5E-1)
203 МЕТ ———————————————————————————————————	ИСТОЧНИК: @ 1986 ФЕВРАЛЬ ПР >25 ПР >30 ПР >40 ПР >90 ПР 13,7-25,2 ППШ ИСТОЧНИК: 1986 ФЕВРАЛЬ ПР >25	14 (1216)(1216)(12))(12)(12)(12)(12)(12)(12)(12)(12)(1	10 1824 1824 1824 1824 24 23/15,05/15,09 9999 N00 W78 1N 434, 16,1838)2,5 CYT)2,5 CYT)1,5 CYT)14 Ч)3 CYT 4,5 CYT AR4713	226 24 19,2 9,2 1,4 6 2,3/2,5/2, 100 3,6 1,4 6,4E-1

ИСТОЧНИК: О ОБЛАСТЬ AR4713 2 СУТ ЗА W-ЛИМБОМ

205	1986 MAPT 06		18	and while more state and other major retain view made rates. While you were	E1306
HET	TIP >5	(780117	(780117	>1 CYT	\8,9
_*	NP >15	(7)0117	(780117	>1 CYT	>0,6
-"-	11P >25				
	TP)30	1812	1956	>6 4	0,26
IMPB	NP 13,7-25,2	18	21)2 CYT	6,0E-1
-"-	NP 20-40	18	20	2 CYT	1,4E-1
	TP 40-80	18	19	2 CYT	1,2E-2
	-		1637 NO2 E01 1		
206	1986 MAN 04		10		110
	TP >5	(1257	1440	>1,3 CYT	
	ΠP >15	(1257	1440)1,3 CYT	10,8
	ΠP >25	(1257	1440)26 H	
 "	ΠP >30	(1257	1440	>25 Ч	2,5
 "	TP)40	(1257	1440	ን ፃ ዛ	1,3
	TP >90	(1257	1440)9 4	1,2E-1
IMP8	NP 13,7-25,2	-	(24	>3 CYT)7,0E-2
	IP 20-40	10	(24	4 CYT)2,0E-2
-"-	11P 40-80	10	(24	3 CYT)3,0E-3
РИОМ	nnw	13	12	1,1 CYT	7E-1
	ИСТОЧНИК: D	BCTHIIKA SC 0946	0939 NØ6 W90 -	AR4727	

Приложение и Части 1 Описок слабых возрастаний потоков протонов у Эзили за 1980—1986 гг.

APPENDIX TO PART 1 List of small proton increases near the Earth during 1980

1980 F.

ЯНВАРЬ	05-06	(MET)	МАЙ	28-29	(IMP)
ФЕВРАЛЬ	11-13	(MET)		29-31	(IMP)
*	16-19	(IMP,MET)	NIOHP	01-04	(IMP)
	20-21	(IMP, MET)	ABCYCT	17-21	(IMP,MET)
MAPT	26	(MET)		21-26	(IMP, MET)
	29	(MET)		31	(IMP, MET)
	31	(MET, IMP)	СЕНТЯВРЬ	0 7	(IMP,MET)
ATTPEAL	01-02	(MET, IMP)	ОКТЯВРЬ	04-05	(IMP, MET)
	15-18	(IMP,MET)		96-19	(IMP, MET)
	19-20	(MET)		25-31	(IMP, MET)
	29-30	(MET)	нояврь	01-02	(IMP, MET)
ЙАМ	01-06	(IMP,MET)	W. PT. C A 1999A	96-11	(IMP)
	97-98	(MET)	ДЕКАВРЬ	09-10	(MET)
	22-28	(IMP)		28-30	(MET)
		1981 F.	· •		
OLIV. APV	00.74	ITHE METS	MIOHI	18-19	(IMP,MET)
ЯНВАРЬ	28-31	(IMP,MET)	MINTID	27-30	(IMP,MET)
ФЕВРАЛЬ	01-04 20-24	(IMP) (IMP,MET)	NIDAP	18-19	(MET)
MAPT	20-24 03-05	(IMP,MET)	ABCYCT	07-09	(IMP, MET)
DINC !	23	(IMP, MET)	1121 / 61	13-17	(MET)
	28-29	(IMP,MET)		21-25	(IMP,MET)
МАЙ	27-31	(IMP, MET)	нояврь	96-98	(IMP)
NIOHE	01-03	(IMP, MET)	.,	13-14	(MET)
7110110	V1 V0	(A) II y (MAY)			
		1982 F.			
		derivative ander ander som the	•		
ЯНВАРЪ	01-02	(MET)	ATTPEJIL	23-25	(MET)
/KILITA O	22	(MET)	MAM	30-31	(MET)
	28-30	(IMP,MET)	ABCYCT	08-09	(IMP, MET)
ФЕВРАЛЬ	19-21	(IMP, MET)	СЕНТЯБРЬ	19-22	(IMP, MET)
MAPT	17	(IMP, MET)		28-30	(IMP, MET)
	27	(IHP)	ОКТЯВРЬ	03-10	(IMP, MET)
			НОЯВРЬ	21	(IMP, MET)
		1983 F			
			-		
ЯНВАРЬ	2528	(IMP)	най	22-23	(IMP, MET)
ATIDAT D	29-30	(ÎMP)	MO.76	04	(IMP, MET)
Ф ЕВРА ЛЬ	11-12	(IMP.MET)	ОКТЯВРЬ	02-03	(IMP, MET)
	20-22	(MET)			•
		1984 Г	•		
			-		
ФЕВРАЛЬ	6 7 98	(IMP,MET)	нояврь	96-98	(MET)
MAPT	07-10	(IMP, MET)		10-11	(MET)
ABCYCT	27-29	(MET)	JEKASP 6	10-11	(MET)
		* *	•	29~31	(MET)

1985 r.

ЯНВАРЬ 01-02 (МЕТ)

1986 r.

МАЙ 08-10 (MET,IMP) НОЯБРЬ 02-04 (MET) Часть 2

PART 2

1980 SHBAPL 16		•			OBNTHE 103		(000
Ha	AA50		A512	AF7A	S11 E09 - U2 P5-9 P2,7	2N	
1-12 K3B	0456		0515	0603	011 LU/	M6	1 410
17,0 FFH	0459 0456 0502		0507.2	0527		2,17	
8.8 FFU	ልፍልን		050B.2	9612	·112 P5-9	2,72	
	8457		0529.2	9629	P2.7	3,52	
1 ITI	0502		0509.2	0702	, =,,	2,66	
						3,39	
100 HTU	0 508		0513,2	>0728	•	>4,60	
•			0530			>3,60	
AC TUTI IV	0502			0739		3	
дс тип 11	050 7			0 540 -		3	
1980 ЯНВАРЬ 25	5		HR 16604	ĸ	СОБЫТИЮ 104		(000
Hα	1903	ini siy ay 44 km e	2108		819 W50		FUZ
			2133				
	9917		2200	2335		M7	
15,4 rru	2058 2 0 57		2100,3	>2142		3,30	
9,4 PTIL	2057		2100,2	2243	[P9]	3,32	
			2107,5			2,45	
			2135,6			2,07	
2,7 FFU	2050		2101,0	2210		2,90	
			2146,0			2,96	
			2155,0			3,04	
100 MCU AC TUN IV AC TUN III,V AC TUN IIIN	2142		2147,0			3,0	
AC THE IV	2058			2335		2	
AC THE III.	2058			2107		2	
AC TUIL LIIN AC TUIL II	2059			2319			
AC TUN II	2100			2143		2	
1980 SHBAPL 31	l			К	СОБЫТИЮ 105		(000
Hop							
· ·				•		HET BAH	
1-12 K3B	0.000		4054 7			HET MAH	
1-12 K3B	095 0		0950,7	0 951		HET #AH 1,36	
1-12 K3B 950 MCU 534 MCU	0950 0950		0950,7 1017	9951 1150		HET JAH 1,36 1,96	
1-12 K3B 950 MCU 534 MCU	0950 0950 0933		0950,7 1017	9951 1150 9937		HET #AH 1,36	
1-12 K9B 950 MFU 536 MFU AC THE II	0 933	0	HR 16631	673/ 	СОБЫТИЮ 106	HET MAH 1,36 1,96 2	(010
1-12 КЭВ 950 МГЦ 536 МГЦ ДС ТИП II	0 933	0	HR 16631	6737 K	COBNTNO 106	HET JAH 1,36 1,96 2	(010
1-12 K9B 950 MPU 536 MPU AC THI II	9933 93 1318	0	HR 16631 1359 1431	6937 K 1516	COBNTNO 106	HET BAH 1,36 1,96 2	(010
1-12 K9B 950 MPU 536 MPU AC THI II	9933 93 1318	0	HR 16631 1359 1431 1402	6937 K 1516	СОВЫТИЮ 106 815 E15	HET AAH 1,36 1,96 2	(010
1-12 КЭВ 950 МГЦ 536 МГЦ ДС ТИП II 1980 ФЕВРАЛЬ (9933 93 1318	0	HR 16631 1359 1431 1402	6937 K 1516	СОВЫТИЮ 106 815 E15	HET AAH 1,36 1,96 2	(010
1-12 КЭВ 950 МГЦ 536 МГЦ ДС ТИП II 1980 ФЕВРАЛЬ (9933 93 1318	0	HR 16631 1359 1431 1402	6937 K 1516	СОВЫТИЮ 106 815 E15	HET AAH 1,36 1,96 2	(010
1-12 K9B 950 MFU 536 MFU AC THI II 1980 • EBPAN • • • • • • • • • • • • • • • • • • •	9933 1318 1318 1334 1325 1318	0	HR 16631 1359 1431 1402 1340,6 1339,6 1339,3	6937 K 1516	СОВЫТИЮ 106 815 E15	HET AAH 1,36 1,96 2	(010
1-12 K9B 950 MFU 536 MFU AC THI II 1980 • EBPAN • • • • • • • • • • • • • • • • • • •	9933 1318 1318 1334 1325 1318	0	HR 16631 1359 1431 1402 1340,6 1339,6 1339,3 1328,5	6937 K 1516 1449 1349 1445 1446	S15 E15	HET AAH 1,36 1,96 2 1B M5 1,91 2,60 2,71 2,78	(010
1-12 K9B 950 MFU 536 MFU AC THI II 1980 • EBPAN • • Hoc 1-12 K9B 15,4 FFU 8,8 FFU 13 MFU 113 MFU 130 MFU	933 1318 1318 1334 1325 1318 -	0	HR 16631 1359 1431 1402 1340,6 1339,6 1339,3	1516 1449 1349 1445 1446	СОВЫТИЮ 106 815 E15	HET MAH 1,36 1,96 2 1B M5 1,91 2,60 2,71 2,78 3,28	(010
1-12 K9B 950 MFU 536 MFU AC THE II 1980 • EBPAN • 6 H _{oc} 1-12 K9B 15,4 FFU 8,8 FFU 5,0 FFU 113 MFU 930 MFU	9933 1318 1318 1334 1325 1318	0	HR 16631 1359 1431 1402 1340,6 1339,6 1339,3 1328,5	6937 K 1516 1449 1349 1445 1446	S15 E15	HET AAH 1,36 1,96 2 1B M5 1,91 2,60 2,71 2,78	(010

	њ 05	O HR 16631	K	COENTINO 106	h (quy) galle might quiter étére cause raun a	(010)
H ₀	1727	1727	1810	617 W09 /9	1B	
1-12 K3B	1723	1729	1751		H3	
9.8 rru	1724	1725.1	1737	/9	2,63	
5 กาน	1724	1726.0	>1735		2,3	
2.7 FFU		1726 .0 1725 .1	11725		1,78	
AC		AEHUN HET			·	
1980 6EBPA	њ 08	● HR 16627	K	СОБЫТИЮ 107 N13 W79 U1,4/15		(866)
Has won	0905	0910	0937	N13 W79	1B	EK
de/ 21-1	8787	9798	9736 4017	114 A /45	7.7/	
10,4111	0704	070/,0	W710	01,4/13	3,30	
4 4 CCH	6904	0700,0	0720 A020		3,34 2 A5	
IAA HEH	9704 9085	0700,J	4727 4724		4,70 4,51	
BC THE TITLE	1 0705	4,11,2	0710 0912		3,01	
BC TUN TU	0905		0917		3	
AC TUR II	9997		0921		3	
1986 ARPEN	. AT	Ø HR 1674€	K	COENTAN 198		(110)
Hox	0 627	0639 6711	0848	N30 W16		нілк
1-12 K3B	27.7	0711 0775	ልንፍን		M2	
74-17A K3B	96.32 n 20	9723 983899	0/41.40		3,3E	F3
75 CCII	8718	0721 \	ARRA		1,87	
9.4 [1]	0710 0637 0700 0702 0652 0701	9729	0750		2,96	
ร คาก	6766	0720	>0750	UO.6 P5	3,11	
650 MCII	0702	0720.6			1,6	
245 MCII	0652	0718.5	>0750		2,78	
245 MFU 100 MFU	0701	0718,5			3,57	
AC THE IV	9791 9637 9795 9796		0825		3	
AC THE III	0705		9797		1	
AC THI II	9706		9729		2	
AC KOHT.	9794		1330		1	
ВКВ	9728	N80(30)-E			1110	
1980 ATTEM	, 04	● HR 16740	К	COENTINO 108	d plan man war have have said date .	(110)
H _{oc}	1454	1509 1523 1517:45	1710D	N27 W35	1N	EIKU
1-12 K3B	1455	1523	1612			
26-460 K3B	1515:50	1517145	1551:50		2,65E	+5
11.8 PT	1502	1507,0	1628		1,93	
2,8 rru	1454 1456	1507,0 1507,5 1508,8	1554		2,74	
930 МГЦ	1456			U0,6 P0,9		
		1519,8			3,09	
000 11011	4500	1548,8	1/0/		3,34 2,48	
ZZB MILL	1500 1502	1511	1604		3	
			1627 1528		3	
C TAN II	1503		1539		2	
AC THE III	1537	N45(130)-	.U	3.6 R		
BKB	1541	M-2(136).		3,0 K	000	

1980 ИЮНЬ 07		• HR 16886	K			(000)
H _{eC}	0116	0118 0119 0117:27	0129	N13 W72	18	Α
1-12 K3B	0115	0119	0125		M2,5	
27-484 K3B	0116:24	0117:27	0122:32		4,55E	-5
>300 K3B	0117:20	0118 1117,3 0118,2 0117,1 0116,8	0118:10			
35 FFH	0117	0118	0120		1,00	
15,4 FFI	0117	1117,3	0119	U2 P15,4	2,85	
2 1111	0116	0118,2	0129		1,60	
245 МГЦ	0116	0117,1	0122		3,72	
100 MFU	0116	0116,8	0129		4,3	
AC THI II	0117 0117 0116 0116 0116 0116		0138		2	
AC THII IV	0117		0144		3	
1980 ИЮНЬ 07		• HR 16886	К	СОБЫТИЮ 109		(000)
H _x	0311	0315 0314 0312:15	0330	N12 W74	1B	DU
1-12 K3B	0 309	0314	0320		M7,3	
27-484 K3B '	0310:51	0312:15	0 322:22		1,33E	6
>300 K3B	0312:10		0313			
2,2 M3B		0311:24			0,0	
4-7 M3B					11,5	0,5
35 ГГЦ	0312 0312	0312	0315		2,62	
17 FFU	0312	0312,5	0317	U2,7 P17	2,98	
2,7	0312	0312,8	0317		2,11	
245 МГЦ	0312 0312 0312	0312 0312,5 0312,8 0312,8 0312,3	0 316		4,20	
100 МГЦ	0312	0312,3	0319		5,0	
AC THI II	0313		0332		3	
AC THI IV	0314		0 325		3	
1980 ИЮНЬ 21	rur dini. Jinu vini mas elve dini: Mili met elek elek elek elek	■ HR 16898	К	COENTINO 110		(000)
H~	0121	0121 0120 0118:40 0140:12	0135	N19 W90	1B	
1-12 K3R	0117	0120	0146		X2,6	
26-484 K3B	0112:40	0118:40	0135:12		4,14E	
26-125 K3B	0139:02	0140:12	0145:28		8,0E+	
)300 KAB	0118:20	V	0119:20		-,	
2,2 M3B					3.1	0.2
					76 1	.2
35 CCII	011B	0119	0125	111/35	3,42	, –
9.4 CCII	0115	1118.8	0130	U1/35	3,14	
1 (1)	0117	0118-9	0138		2,39	
100 FFII	0107	0118.7	-		3,40	
AC THII TU	0111		0135		1	
NC THE TILLY	0118		0120		2	
4-7 M3B 35 FFU 9,4 FFU 1 FFU 100 FFU AC THU IV AC THU III,IV AC THU III	0119		9138		2	
1980 NIDH6 21		● HR 16918	K	COENTINO 110		(000)
1980 WDH6 21	0003	● HR 16918	6248	COENTHO 110 S12 E14	2N	(000) FILL
1980 WDHb 21	0003	● HR 16918 9955 9117	9248	COENTHO 110 S12 E14	2N	FILL
1980 MDHb 21 H _{oc} 1-12 K3B	0003	● HR 16918 0055 0117 0059	0248 0117	COБЫТИЮ 110 S12 E14	2N M2,3	FILL
H _{CK} 1-12 K3B 24-259 K3B	9949 (9945:18	● HR 16918 0055 0117 0059 0058:22	0248 0117 0110:41	S12 E14	2N M2,3 >1,99E	FILL
H _{CK} 1-12 K3B 24-259 K3B	9949 (9945:18	9955 9117 9959 9958:22 9954	9248 9117 9119:41	S12 E14	2N M2,3 >1,99E 1,50	FILL
H _{CK} 1-12 K3B 24-259 K3B	9949 (9945:18	9955 9117 9959 9958:22 9954	9248 9117 9119:41	S12 E14	2N M2,3 >1,99E 1,50	FILL
H _{CK} 1-12 K3B 24-259 K3B	0003 0040 (0045:18 0037	● HR 16918 9055 9117 9059 9058:22 9054 9056,2 9058,2 9193,4	9248 9117 9119:41	S12 E14	2N M2,3 >1,99E 1,50	FILU

		_				
100 MCU	0040	0054,6	_		3.77	
	0052	003470	0116		2	
AC THE II			0055		_	
AC THU III	0054 0059				_	
AC THE IV	0059		0111		-	

1980 ИЮНЬ 29		■ HR 16923	K	COEPITNO 111		(000)
H	1035	1045	1105	827 W90	1F	Α
1-12 K3B					M4,2	
26-484 K3B >300 K3B	1040:10	1041:50	1058:40		5,44E	+5
3300 KAB	1041:40		1042:30			
7500 N38 15,4 FFU 8,8 FFU 2,7 FFU 606 MFU 245 MFU AC TUII III,V AC TUII II	1041	1042 7	_	⊔0,6 ₽9	2,92	
13,4 (14	1071	1042,3	1047	11/A / DO	3,20	
8,8114	1041	1042,3	104/	U0,0 F7		
2,7 TTU	1041	1042,1)1000		2,61	
606 MLII	1041	1042,6)1051		2,04	
245 MFU	1041	1041,8	1045		4,32	
AC TUN III,V	1041		1047		3	
AC TUIL II	1047		1059		2	
**						
1980 ИЮЛЬ 05		● HR 1.6955	K	COEMITMO 112		(000)
1700 710710 VO						~~~~
H _{oc} 1-12 K3B 28-490 K3B 17 FFU 9,4 FFU 2 FFU 1 FFU 245 MFU BC TUIL III	12277	2244	12359	N28 H29	1B	
n _o (7227	2277	72337	IVAN MALI	M8.9	
1-12 N3B	2233	2270	2327			
28-440 K3B	(223/124	2241135	2330137)2,64E	*0
17 FFU	2233	2239,9	2243	/17	2,39	
9,4 FFU	2233	2240,2	2254		2,37	
2 กาม	2233 2233 2235 2236 2236 2236 2238 2238	2239,8	2254		2,35	
1 001	2236	2244.6	2254	P1	3,4	
245 MCII	2236	2246.1	2257		3,11	
AC TAN III	2225	,.	2255		3	
			2400		2	
ДС ТИП IV ДС ТИП II	2230		2255		2	
MC IAIN TT	2244		2200		•	
4000 1000 47		A UD 1/070		CORUTIAN 117		(220)
TARA NINSP TA		9 NK 107/0		COEMITMO 113		14207
Hoc	0 536		0/52	S11 E06	2N	FIJL
		0702				
1-12 K3B	0512	0612	0647		M3,4	
27-127 K3B	0610:51	0612 0615:09	0617:11		8,5E+	3
11,8 TTU	0530	0605	0700		1,85	
9,4 ГГЦ	0545	0559			1,60	
•		0559 0605,6 0559,1	4074		1,88	
8,4 CCU	9530	9093,0	W03W		n 10	
2,7 ୮ՐԱ	0546	0557,1	0033		2,40	
2 ՐՐԱ	9 546	0559,4	9659	U1 P2 U0,6 P1,4	2,//	
1,4 ୮୮ሀ	9555, 6	0605,6	>0620	U0,6 P1,4	2,64	
1 LL1	0555,6 0542	0559,4 0605,6 0559,4	0 747		1,6/	
•		0604,2			2,48	
650 MCU	0545	0601,1	0744		2,00	
CON IN M	73.0	9696			1,85	
AAA MEH	0548	0559, 3	0411		3,74	
100 HFU	17.)4百	v JJ7.J	AOIT			
	***				7 70	
		9695	AFFO		3,79	
AC THE IIIS	9538		0 558		2	
AC TUIL IS			0719		2 2	
	9538				2	

1980 ОКТЯБРЬ	14	● HR 17198	К	COBUTUD 115		(110)
Hα	0541		0738	S07 W06	3B	FIJK
1-12 K3B 28-127 K3B 28-504 K3B 17 FFII	0538	9629 9611	0632		X3.3	
28-127 K3B	(0544:15	0546:15	0552:50		>2,4E+4	1
28-504 K3B	0557:50	0611 0546:15 0608:55 0542-8	0633		4.0E+4	
17 774	0541	0542,8	0544		2.52	•
8,8 กานี	0541	0544	0650		3,0	
5 114	0541	0543	0639	P5	3,08	
1,4 ГГЦ	0541	0543	0639		2,04	
15,4 FFU	0601	0608,3	0707		2,53	
8,8 FFU	0557	0608.3	0710	P9	2,87	
5 FFN	9557 9557			1. 4	2.61	
650 MCI	9557 9697	0609,1	0702 1010		1,49	
3 11.11	0 618	0619,2	0623		2,40	
2 111	9692	0619.2	9627		2,35	
	9697	VO17,2	0627 0625		1,85	
650 MCU		0619,7	WOZU AZED			
100 MFU	9616	9617	9658		2,36	
C TUN 18	0532		9706	•	2	
AC TUN II	9616		9646		1	
IC TUIT IV	0619		0621		1	
1980 OKTABP b				COBNTHO 115		(110)
1a	0450			N21 E55		
1-12 K3B	0509	0543	9638		H2	
1,4 FFU	0509	0509,8	0604		2,34	
า กาน	0502	0520,9			2,0	
650 MFIL	0512	0521.5	-		2.08	
3,75 MCU	0509	0530	9699	1-4	1,65	
950 MCU	0512	0527,7	-		1.60	
35 FF11	05 0 7	0552	0710		1,30	
17 FFU	0510	9 556	1722		1,48	
9,4 FFU	0509	0551	0609	P9	1,60	
5 กาม	0 512	0552	9694	, ,	1,57	
AC TUN IIIS	9598	AJJE	0 718		1,3/ 	
AC TUN IIIS	0510		0 718			
RC THII IV	9514		9718 9542			
AC THE II	0 519		0 549		2	
1980 НОЯБРЬ		 HR 17244 	K	COENTINO 116		
	0900	0905 0914	0 958	N12 W63	2В	
Hoc		V/47	9949		M9.6	
	0901	0915				
1-12 K9B	0901 0922:30	0915 0924•15	0926+35			+4
1-12 K9B 29-34 K3B	0922:30	0915 0924:15 0941:75	0926:35		1,04E	+4
1-12 K9B 29-34 K9B 29-34 K9B	0922:30	0915 0924:15 0941:35	0926135 0941:50		1,04E	+4
1-12 K9B 29-34 K3B 29-34 K3B 35 FT'U	0922:30 0941:00 0840	0915 0924:15 0941:35 0914,3	0926:35 0941:50 0953		1,04E	+4
1-12 K3B 29-34 K3B 29-34 K3B 35 FTU 15-4 FCU	0922:30 0941:00 0840 0911	0914,3 0914.3	0 953 0 921	pe.	1,04E 2,87 2,79	+4
1-12 K3B 29-34 K3B 29-34 K3B 35 FTU	0922:30 0941:00 0840 0911	0915 0924:15 0941:35 0914,3 0914,3 0914,3	0926:35 0941:50 0953 0921 0936 0919	P9	1,04E	+4

1980 НОЯБРЬ	11	Ø HR 17246	K	COENTINO 116		(000)
H _∞	1729	1744	>1823	S11 W69	2B	D
1-12 K3B	1738	1746	1817		M4.8	
29-272 K3B	1722:55	1724:20	1728:05		1,07E	+5
29-508 K3B	(1737:30	1742:30)9,48E	
)300 K3B	1743:45	1744:34	1700111		,,,,,oc	. , .
15,4 FFU	1723	1724 1	1728		2.34	
	1740	1744	1801		1,65	
2,8 rru	1723	1724,3	1731	P2,8	2,61	
2,0114	1739	1745,5	1800	12,0		
1.4 FFU	1723	1724,1	>1729		2,31	
x, -1 11 H	1740)1758	F14 A	1,95	
606 MCII	1723			P1,4	3,83	
ONO LAT		1725,8)1727		1,66	
444 1/20	1740	1743,6	>1759		3,00	
410 MFU	1723	1724,3	>1725		3,30	
	1742	1742,6	>1759		2,48	
245 MFU	1741	1742,6	>1755		3,18	
AC THU III	1724		1725		3	
AC TUN III,V	1741		1749		2	
AC THI IV	1743		1753		2	
AC THI II	1744		1749		2	
AC TUN III	1751		1753		2	
ВКВ		N05(20)-W	2,00	7 00	1575	
1980 НОЯВРЬ	14	Ø HR 17255	K			(000
H∝	0 639	9645	0715	S12 W32	1N	EFT
1-12 K3B	0639	0652	0706		M2.1	
17 ГГЦ	9649	0645,5	9647		1,91	
15,4 FFU	0641,1	0645,6	0704		2,04	
ัย, 8 rrii	0639	0645,6	0704	₽9	2,40	
5 กาน	9639	9645.6	0654	• •	1.90	
2,7 114	0640,6	0644,6	0648		1.46	
2 เป็	0640	0643,0	0652		1,60	
1 FFU	0641,3					
		0644,3	9648		2,20	
AC KOHT.	9642		0646		1	
AC TUN III	0 659		0700		1	
1980 НОЯБРЬ	14	Ø HR 17255	΄ κ	СОВЫТИЮ 117		(000
H _≪	9899	0 804		813 W35		
1-12 K3B	0620	0811 0808	0812		M8	
29-131 K3B	(0731100	0748120)8,10E	+5
15,4 ГГЦ	0741	9745.6	0859		1,75	
8,8 FFIL	9736	9745,6	0832		2,04	
	0 737	0745,1	6 836		2,26	
	4707	0744,6	9994	P2.7-5	2,3	
5 FF14	A779		₩/₩7	14,7 0		
5 เป็น 2,7 เป็น	0729 0729		A754		1 07	
5 ГГЦ 2,7 ГГЦ 1,4 ГГЦ	0 729	0745,3	9754 9915		1,97	
5 ГГЦ 2,7 ГГЦ 1,4 ГГЦ 950 МГЦ	0729 0735		0815		1,68	
5 ГГЦ 2,7 ГГЦ 1,4 ГГЦ 950 МГЦ ДС ТИП III	0729 0735 0733	0745,3	0815 0734		1,68	
5 ГГЦ 2,7 ГГЦ 1,4 ГГЦ	9729 9735 9733 9742	0745,3	0815 0734 1458		1,68	

1980 НОЯБРЬ	14	Ø HR 17255	кс	ОБЫТИЮ 117		(000)
Н _ж 1-12 КЭВ	1539 1539	1544 1547	1718 1601	S16 W39	1B M2,7	EDI
29-131 K3B	1539:35	1539:50	1542:30		1,81E	·5
15,4 FFU	1540	1550,3	1553		1,71	
8,8 rru	1539	1543,6	>1552	U1,7 P9	2,20	
5 rru	1538	1543,6	>1552		2,00	
2,7 ITH	1541	1543,6	>1545		1,30	
1,4 FFU	1541	1543,1	>1545		1,0	
606 MUI	1542	1543,1	>1545		1,60	
AC THE IN	1350		2328		2	

1980 НОЯБРЬ	14	Ø HR 17255	κc	ОБЫТИЮ 117	(00)	0)
Ha	2346	2359 2345	0100	S14 W47	2N FGHI	KT2
1-12 K3B	2350	0004	0104		M6	
29-131 K3B	2350:30	2359:10	0006:00		1,17E+6	
35 FFU	2355	0015	0155		2,20	
15,4 FFU	2353	2356,3	>0021		2,32	
8.8 rru	2351	2356,1	>0012	P5-9	2,65	
5 FF14	2352	2356,3	>0013		2,64	
2.7 [[1]	2353	2356,5	>0003	•	2,04	
1.4 ГГЦ	2355	2356,3	>0000		1,51	
AC THE III	2355		2356		1	
AC THII IS	0000		0159		-	
AC THE IS	0000		0717		-	

1980 НОЯБРЬ	23	• HR 17281	K	COENTAD 118		(010)
Ha	1751	1755 1845	2037	N11 W20	1B	D
1-12 K3B	1833	1904	1929		M2,3	
29-57 K3B	(1839:50	1844:40	1850:13)2,8E·	+4
15,4 FFU	1845	1911,5	1915		1,58	
8.8 rru	1842	1856,1	1918	U2,7 P9	2,40	
5 กาม	1833	1857,3	>1918		1,59	
2.7 114	1834	1856,6	>1918		1,81	
1.4 ГГЦ	1834	1854,5	>1922		1,99	
606 MLIT	1845	1911,8	>1917		2,18	
410 MFU	1842	1912,8	>1917		2,41	
245 MCH.	1842	1846,5	>1917		2,40	
AC THE III	1842	1844			2	
AC THI II	1845	1919			3	
AC THE ITEM	1848	1912			2	
AC THI IV	1858	1952			2	
ВКВ	1933	N20(100)-W		4,2R	910	

1980 НОЯБРЬ	28	O HR 17304	KC	OENTHO 119		(000
Hac	0925	0948	1230	S13 E63	1N	
1-12 K3B	0938	1056 0949:00 0950,1 0949,3	1144		M1,9	
29-131 K3B	(0937:40	0949:00	1035:33)1,97E	45
15.4 FFII	0947	0950.1	0950		1,53	
8.8 rru	6947	0949-3	0956	3-15	1,63	
5 กาน	9947	0948.5	9499	0 .0	1,48	
2.7 ГГЦ	0945	0949,3 0948,5 0948,3 0948,5	8956		1,52	
1,4 FFU	0945	9040,5	A054		1,15	
950 MFIL	0945	9948,5 9948,7 9950,5 1010,3	A057		0,7	
260 MCII	0948	ADRA S	1014		1,89	
5,2 rrii	0935	1010 7	1435	P5	2,15	
		4040,0	4000	, 3		
3 FFU	1002 1007	1010,9 1011,3	1050		1,36	
1,4 FFU		1011,3	71034		2,53	-
810 MFU	1011	1030,3	1017	P1,4	2,78	
200 MFIL	1000	1011,5	1012		1,59	
AC TUN III	V020	1030,3 1011,3 1014,3	0950·		1,60	
AC DCIM	1011 1008 0859 0949		ALDA.		1	
AC DOIN AC THII IN	0,1,		095 0		2	
AC THE III	1002 1003		1450		2	
AC KOHT.	1003		1010 1005		2	
AC NON1.	1004		1802		1	
1981 MAPT 07		● HR 17481	KC	ОБЫТИЮ 120		(000
Ha	(0613	0630 0638 0633,5 0632,3 0621,8 0621,1 0621,2 0620,5 0621 0624,3 0626	0714	822 W79	SN	
1-12 K3B	0 536	9 638	0710		M2,0	
15,4 ГГЦ	0618	0 633,5	0703		1,41	
8,8 FFU	0619	0632,3	0 700		1,74	
5 PTU,	0612	0 621,8	9641		1,97	
2,7 ГГЦ	0613	0621,1	0 653	P2,7	2,23	
2 FFU	0611	0621,2	0 649		2,16	
1,4 ГГЦ	9612	0620,5	>0644		1,75	
950 МГЦ	0612	0621	9649		1,04	
200 МГЦ	0621	0624,3	9640		1,04	
113 МГЦ	0624	0 626	9634		2,9	
MC 1711 TTT	0621		0 623		2	
AC TUN II	9622		0647		2	
AC TUN IV	0640		0715			
BKB	9726	N00(20)-	-W		1275	
1981 MAPT 25		● HR 17528	к с	OBUTHO 121		(000
H _{&}	2039	2046 2044 2046140 2043,7 2045,2 2045,2	2124	N09 W87	2B	
1-12 K3B	2036	2044	2135		X2,2	
20-135 K3B	(2046:00	2046140	2115:56)6.97E	+6
9,4 FFU	2038 2038 2043	2043,7	2052		3.19	-
2,8 ГГЦ	2038	2040.5	2054		2,42	
200 HFII	2043	2045.2	2049		4.08	
100 HTU	2050	2051,2	2054		3,88	
	2038		2400		-	
AC TUT 1S			2107		3	
AC TUT 1S AC TUT II	2042				J	
AC TUN II	2042 2044				2	
AC TUN II AC TUN III	2044		2051		2	
AC TUN II		N20(40)-W			2 1 1030	

1981 MAPT 30)	● HR 17535	K	COBLITUID 122	(010
H _∞	0017	0047 0101	0342	N13 W72	1N
1-12 K3B	0017	0054	0227		M3,5
30-280 K3B	(0009:55	0021:45	0035:02)2,25E+5
35 FF4	0020	0103	0325		1,78
15,4 FFU	0040	0050,3	0109		1,73
8,8 FFU	0013	0050,3	0140		2,14
5 กาน	0010	0023,1	>0118		2,36
2,7 ГГЦ	0009	0023,1	>0127	U0,6 P2,7	2,66
2 FFII	0009	0023,1	0127		2,58
1 FFU	0009	0023,4	-		2,12
496 MLII	0014	0019,8	0124		1,79
245 NCU	0040	0042	0043		1,38
AC THI IS	0000		0034		1
AC THIT KOHT.	0012		0016		1
AC THE III	0012		0014		1
AC TUN IIIS	0016	*	0059		1
BKB	0049	N05(150)-W)1300

1981 ATTPENS	01	● HR 17539	K	СОБЫТИЮ 123	(010
Hac	0102	0117	0241	S43 W52	3B
•		0130			
1-12 K3B	0106	0153	0327		X2,3
30-417 K3B	(0105	0146	0157:20)7,20E+6
>300 K3B	0133:04		0157:38		
4-7 M3B					20 4
35 FFU	0133	0146	0205		2,90
•		0156			2,87
15,4 FFU	0125	0146	0319		3,46
9.4 ГГЦ	0131	0146,1	0220		3,64
		0153,5		U2,7 P9	3,47
8.8 111	0125	0146	0217	U1 P9	3,76
3.75 FFU	0131	0146,2	0215		3,39
		0153,7			3,38
2,7 FFU	0125	0155,4	0302		3,3
2 111	0131	0146,6	0225		3,09
,		0153.9			3,36
		0210,4			2,89
1 774	0130	0145,7	0224		3,04
•		0209,7		P1	4,36
606 MLII	0123	0209,6	0 228		4,15
500 MFU	0124	0150,5	0232		4,15
200 MFU	0129	0144	0232		3,11
100 MFU	0132	0200	0328		4,00
AC THIT IV	0119		0322		2
AC THE III	0132		0137		2 2 2 2
AC THE II	0137		0157		2
AC THII S	0134		0218		2
BKB	0222	S60(60)-W		6R	1190

1981 АПРЕЛЬ	03	HR 17539	K	СОБЫТИЮ 124	(110
Hac	0905	0911 0920		S41 W83	1N
1-12 K3B	0912				MB,3
30-136 K3B	(0911:35	0919:25	0943:10)9,1E+4
	0944		>0954		2,26
	0943				2,75
	0943			U1,4 [P5]	2,85
	0935	0950,0		·	2,61
1.4 ГГЦ	0935	0951,6	>1003		2,48
606 MLII	0937	0951,1	>1003	P0,6	3,43
245 MFU	0945	0255,3	>1005	·	2,41
100 MFII	0947	0949,1	1020		3,52
35 FF4	0850	1025,0	1200		2,32
19,6 FFU	0902	1021,0	1342		2,41
	0902				2,79
5,2 ITU	0902	1019,6	1502	U1 P5	2,87
3,0 111	0934	1020,0	1040		2,74
950 MFH	0935	1020,0	1027		2,18
430 MFU	0929	1019.3	1058		2,46
204 MFII		1020,0	1124		1,70
AC THE IV			1050		
DC THE II			1019		2 3 3 3
	0959		1007		3
	1017		1020		3
BKB	0949	S55(70)-W	-		1080

1981 АПРЕЖЬ 04	١	Ø HR 17539	1	K COENTUM 124	(110)
H _{oc}	0502	0502	>0522	S44 W87	2N
1-12 K3B	0500	0503	0516		X1,9
15-35 K3B	9591		>0509		
4-7 M3B					25 5
35 FFU	0502	0502	0504		3,28
· 17 [[]	0502	0502.4	0506		3,44
8.8 TTU	0501	0502.3	0506	U0,6 P9	3,62
2,7 ГГЦ	0502	0502.6	0506		3,11
606 MLII	0502	0502.6	0508		2,89
200 MFU	0502	0504,5	0514		4,38
100 MFU	0502	0503,7	0523		4,6
AC THI III.V	0501		0506		3
AC THI II	0503		0537		3
AC THE IIIN	0509		0601		1
AC THI IV	9516		0 542		2
BKB	9559	S50(15)W			10007

1981 АПРЕЛЬ 10		IPE№ 10		OENTUD 125	(121)	
Hoc	1632	1651 1705	2020	NØ7 W36	2B	
1-12 K3B	1645	1655	1776		X2,5	
30-525 K3B	1633:40	1651:15	1656:20		3.63E+6	
)300 K3B	1646:13	1644:53	1655:13		2.2E+3	
2,2 M3B					13.5 1	
4-7 M3B					18,6 1,6	
35 ГГЦ	1639	1647,6	1729		2.76	
19,6 ГГЦ	1639	1648	1729		3,10	
8,4 ГГЦ	1632	1647.6	>1722	U1.4 P5-9	3,23	
5,2 FFU	1630	1646	>1720		3,23	
2,8 rru	1640	1651,5	1705		3,02	
930 MCH	1640	1647,7	1716		3.25	
228 МГЦ	1643	1646,5	1655		2,94	
AC THR III	1644		1713		3	
AC TUIT IV	1645		1659		2 3	
AC TUN II	1649		1716		3	
BKB	(2112	N25(50)-₩			570	

1981 АПРЕЛЬ 1	ð	Ø HR 17576	К	СОБЫТИЮ 125	(121
Hoc	1059	1114	1204	N11 E53	18
1-12 K3B	1100	1117	1200		X1,1
30-136 K3B	1108:50	1109:15	1139:15		1,20E+5
35 FFU	1050	1115,7	1250		2,63
9,1 rru	1102	1114,7	1121	U0,8 F9	3,18
2,7 FFU	1101	1115	1216		2,61
810 MFU	1102	1115,5	1140		2,20
100 МГЦ	1108	1118,0	-		3,85
15 FFU	1100	1108,3	-		2,27
9,1 rru	1102	1108,1	-	U3 P9	2,38
3,1 TTU	1103,4	1108,1	_		1.94
127 MFU	1106	1107,8	1216		3,54
2,8 ՐՐԱ	1120	1128	>1220		2,28
430 МГЦ	1055	1128	-		>2.86
200 МГЦ	(1106	1128,5	-		2,86
AC THE IV	1103		1135		2
AC THE III,V	1104		1114		3
AC THE II	1110		1135		3
BKB	1136	N20(45)-E			810

1981 АПРЕЛЬ 1	4	@ HR 17590	K	COBLITUO 126	(0
	. 4 4	2332			
Hoc	2330	2340	0030	N13 E73	1N
1-12 K3B	2329	2353	0023		M3,4
30-347 K3B	2327:55	2340:00	0023		7,67E+05
>300 K3B	2339:27		2355		1,91
35 FFU	2338	2347	2356		2,33
17 ГГЦ	2333	2346	2411		3,15
9,4 FFH	2328	2346,6	2428	. U0,6 P9	3,31
2,7 FFU	2328	2343	-		3,15
606 MCU	2329	2349,6)2415		2,49
245 МГЦ	2339	2343,5	2357		2,81
5 ՐՐԱ	2328	2352,8	>2424	/5	3,2
2 FF4	2327	2353,8	2427		3,0
1 FFU	2328	2358,7	2428		2,5
AC THE IV	2329		2408		1
AC THE ILLS	2339		2400	•	2
AC THE II	2345		2407		1

1981 АПРЕЖЬ	24	● HR 17590	K	COBNTNO 127		(220
H _{oc}	1344	1408	1736	N18 W50	2В	U
		1445				
1-12 K3B	1343	1400	1541		X5,9	
30-420 K3B	(1420:45	1432:55	1517:53)1,07E	+6
BB	1347	1357	1408			
35 rru	1345	1358,1	1621	U2,7/35	4,24	
11,8 ГГЦ	1345	1359,8	1457		3,83	
8,8 CCU	1347,5	1354,5			3,65	
2,7 ГГЦ	1347,5	1354,5			2,88	
909 WLIT	1347.5	1355	-		3,89	
245 MCII	1347,5	1357	-		4,0	
8,8 171	1343,6	1402,3	1555	2,8/8,8	3,86	
5,2 FFU	1345	1402,6	1635		3,53	
2,8 FFU	1350	1403	1520		3,13	
15,4 FFU	1431	1435	>1512	/15,4	2,88	
8,8 rru	1431	1435	>1515		2,60	
2.7 114	1431	1435,1	>1516		2,60	
1,4 PPU	1428	1437,5	>1515	P1,4	3,41	
245 HFU	1427	1433,3	>1508		2,69	
AC THI III	1353		1444		3	
AC THE IV	1354		1505		3	
AC THE II	1355		1429		2	

1981 АПРЕЛЬ	26	Ø HR 17590	к	СОБЫТИЮ 127	(220)
Hoc	(1057	1140	>1412	N15 W74	2N U
1-12 K3B	1057	1235 1148:10	1416		X1,2
30-524 K3B	(1054:50	1148:10	1155:19)3,62E+6
>300 K3B	1145		1154		13,08
4-8 M3B					15,4 1,3
36 TTU	1142	1156,1	1302		3,45
11,8 FFU	1050	1152.1	1438		3,79
ร เป็	1055	1153.3	1348	P5	3,89
3,2 ГГЦ	1055 1055 1053 1107 1110	1152,1 1153,3 1153,4 1154,3	1503		3.88
1,4 ГГЦ	1103	1154.3	1313		3,23
810 MFU	1107	1157,8			2,78
204 MFU	1110	1132	1205		2,24
BC TWB TU			1225		2
AC THE III	1116		1144		2
BKB	1246	S05(130)-W			>1200×
				СОБЫТИЮ 127	
Ha	0816	···			1N
		0919		1417 W70	
1-12 K3B	0720	0820 0812:55	0945		X5,5
30~524 K3B		0812:55			4,85E+7
>300 K3B	0804		0833		2,8E+2
2,2 M3B					11,7 2
4-8 M3B					77 2,2
950 MCU	0757	0805,5 0805,6	083 5		2,77
650 MFU	9756	0805,6	0 820	F0,65	
204 MFU	0 802	0806,5	0827		2,40
35 TTU	0757	9898	0912	/35	4,15
11,8 rru	0752	9895,5 9895,6 9896,5 9898 9898,3 9898,7 9897,9	1112		3,87
2 ୮୮ዚ	0745	0808,7	9999		3,32
200 МГЦ	0801	0807,9	0831		2,28
35 CLT	-	0813	-		4,06
9,4	0739	0813.5	0900	P9,4	4,11
5,2 FFU	9739 9752	0813,5	1252	P9,4	3,78
1 ГГЦ	9753	0813,5 0814,1	>0838		2,60
AC THE III	0752		0812		2
AC THE IV	0800		0835		2
AC THE II	0812		0 836		2
					(220)
H _{ex}	(2205	2213	>2238	N16 W90	SB
1-12 K3B 30-84 K3B	2104 (2148:25	2114 2140-14	2343		A1,2
	7414	2149:10	ZZ38180		>5,12E+5
15,4 FFU	2110 2106	2118,6 2118,5 2118,4 2118,5 2119,5 2109,3 2115	213/		2,28
8,8 FFU	7100	2118,5	2149		2,59
3,75 ITU	2104 2103 2109 2114	2118,4	2149		2,83
2,8 II U	21 0 3	2118,5	2130		
606 FFU 245 HFU	2107	21 0 9,3 2115	2111		1,2
AL THE CAT	2114	2115	2123		1,36
AC THE IV	2108		2147		2
AC THE I	2109		2135		2
AC THE II	2112 2115		2157		3
	2115	N05(?)-₩	2119		2
BKB	2121	MA2(5)-M			1400*

30			COBITHO 129		(220)
				HET A	ХИННА
	0321	0324		C 1,3	
0302:00	0 305:25	ø 328		3,4E+4	•
0306	0322,1	0331		1,28	
0210	0325	0500		1,23	
0258	0313,8	0321		1,51	
0300	0313,8	0319		2,11	
0304	0311,8	0322		3,15	
0303	0314	0 328		2,92	
0304	0316	0343		2,69	
0306	0314,1	0347		3,93	
0308		9517		2	
8020		0350		2	
0322		0452		1	
	● HR 17620		COENTIND 130		(110)
				18	
0035 0875	OR4A	9994	MID EVO	MQ =	
64.7269	A979.45	#848•31		1 1754	.4
4939.49	V030143	4841.24		1,1/6	0
A917	A970 Q	8030		2 00	
4937	AQ30 7	A077	P12	7 05	
A935	0037,7	1205	7.12		
4633 4837	9848 1	1203			
9037	4040,1	4004		1 11	
222	001010	AFGA		,	
0 839		0841		1	
	Ø HR 17620	, к	COENTUD 130		(110)
1406	1410	1444		X1,0	
1407:10	1408:40	1414:40			
1407	1408,6	1407		1,90	
1407	1408,8	1627		3,03	
1407	1409,1	1415	tp2,83	3,08	
1407	1409,1	>1416		3,04	
1408	1407,1	1412		1,40	
Kar	EHMA HET				
					(110)
2254	2259 2316	0010	N18 W0 5	1B	FIUZ
2254	2259 2316 2307	9919 2331	N18 W05	1B M4.4	FIUZ
2254 2253 2255:00	2259 2316 2307 2258:00	9919 2331 2315:31	N18 W6 5	1B M4,4 1,77E+	
2254 2253 2255:00 2256	2259 2316 2307 2258:00 2306,6	9919 2331 2315:31 2318	N18 W0 5	1B M4,4 1,77E+ 1,89	
2254 2253 2255100 2256 2256	2259 2316 2307 2258:00 2306,6 2304	9919 2331 2315:31 2318 2319	N18 W0 5	1B M4,4 1,77E+ 1,89 2.04	
2254 2253 2255:00 2256 2256 2256	2259 2316 2307 2258:00 2306,6 2304 2258.3	2331 2315:31 2318 2318 2310)2310	N18 W6 5	1B M4,4 1,77E+ 1,89 2,04	
2254 2253 2255:00 2256 2256 2256 2256 2256	2259 2316 2307 2258:00 2306,6 2304 2258,3	9010 2331 2315:31 2318 2310 >2310 >2310 >2309	N18 W65	1B M4,4 1,77E+ 1,89 2,04 2,14	
2254 ,2253 2255:00 2256 2256 2256 2256 2256	2259 2316 2307 2258:00 2304,6 2304 2258,3 2304 2304	9010 2331 2315:31 2318 2310)2310)2309)2314	N18 W65	1B M4,4 1,77E+ 1,89 2,64 2,14 1,93	
2254 ,2253 2255:00 2256 2256 2256 2256 2256 2256 2256	2259 2316 2397 2258:00 2306,6 2304 2258,3 2304 2304,3 2303.4	9010 2331 2315:31 2318 2319)2319)2309)2314 2352	N18 W65 U2,7 P5 P1,4	18 M4,4 1,77E+ 1,89 2,04 2,14 1,93 3,46	
2254 2253 2255:00 2256 2256 2256 2256 2256 2256 2256 22	2259 2316 2397 2258109 2306,6 2304 2258,3 2304 2304,3 2303,6	9010 2331 2315:31 2318 2310 >2310 >2310 >2309 >2314 2352 2317	N18 W65 U2,7 P5 P1,4	18 M4,4 1,77E+ 1,89 2,04 2,14 1,93 3,46 1,18 2,77	
2254 2253 2255100 2256 2256 2256 2256 2256 2256 2254 2258 2259	2259 2316 2307 2258:00 2306,6 2304 2258,3 2304 2304,3 2303,6 2308,7	9010 2331 2315:31 2318 2310)2310)2309)2314 2352 2317 2352	N18 W65 U2,7 P5 P1,4	18 M4,4 1,77E+ 1,89 2,04 2,14 1,93 3,46 1,18 2,77	
2253 2255:00 2256 2256 2256 2256 2256 2256 2254 2258 2259	2259 2316 2307 2258:00 2306,6 2304 2258,3 2304 2304,3 2303,6 2308,7	2331 2315:31 2318 2310 >2310 >2310 >2309 >2314 2352 2317 2352	N18 W65 U2,7 P5 P1,4	M4,4 1,77E+ 1,89 2,04 2,14 1,93 3,46 1,18 2,77	
2254 2253 2255:00 2256 2256 2256 2256 2256 2254 2258 2259 2259 2313	2259 2316 2397 2258:00 2306,6 2304 2258,3 2304 2304,3 2303,6 2308,7	2331 2315:31 2318 2319)2310)2310)2399)2314 2352 2317 2352 2400 2333	N18 W65 U2,7 P5 P1,4	18 M4,4 1,77E+ 1,89 2,04 2,14 1,93 3,46 1,18 2,77 1 1	
	0318 0302:00 0306 0210 0258 0300 0304 0303 0304 0308 0308 0308 0322 0835 0835 0836:40 0838:08 0837 0837 0837 0837 0837 0839 0839	0318 0321 0302:00 0305:25 0306 0322,1 0210 0325 0258 0313,8 0300 0313,9 0304 0311,8 0303 0314 0306 0314,1 0308 0308 0322 OHR 17620 0835 0839 0835 0840 0836:40 0838:45 0837 0839,7 0837 0837,0 0837 0840,1 0838 0840,8 0837 0840,1 0838 0840,8 0837 0840,1 0838 0840,8 0837 0840,1 0838 0840,8 0837 0840,1 0838 0840,8 0837 0840,1 0838 0840,8 0837 0840,1 0838 0840,8 0837 0840,1 0838 0840,8 0837 0840,1 0838 0840,8 0837 0840,1 0838 0840,8 0837 0840,1 0838 0840,8 0837 0840,1 0838 0840,8 0837 0840,1 0838 0840,8 0837 0840,1 08	0318 0321 0324 0302:00 0305:25 0328 0306 0322,1 0331 0210 0325 0500 0258 0313,8 0321 0300 0313,8 0319 0304 0311,8 0322 0303 0314 0328 0304 0316 0343 0306 0314,1 0347 0308 0350 0322 0452 © HR 17620 K 0835 0839 0930 0835 0840 0906 0836:40 0838:45 0848:31 0838:08 0837 0837 0839,8 0938 0839 0840,1 0841 0938 0840,1 1205 0940	0318	0318 0321 0324 C 1,3 0302:00 0305:25 0328 3,46+4 0306 0322,1 0331 1,28 0210 0325 0500 1,23 0258 0313,8 0321 1,51 0300 0313,8 0319 2,11 0304 0311,8 0322 3,15 0303 0314 0328 2,92 0304 0316 0343 2,69 0306 0314,1 0347 3,93 0308 0517 2 0308 0517 2 0309 0322 0452 1

1981 MAN 08		Ø HR 17638		COBUTUD 131	pu ann rut on an an an ais mò	(120)
H _{oc}	2201	2214 2234	0151	N09 E37	2B	FHJKZ
1-12 K3B	2221	2252	2346		M7,7	
30-282 K3B	2208:55	2233:25	2343:55)1,65E	+6
17 ГГЦ	2210	2224,1	2224		1,11	_
9,4 FFU	2200	2221,7	2223		1,65	
3,75 กรนี้	2155	2219,4	2223		2,17	
2 เกม	2155	2218,8	2223		2,15	
1 774	2200	2219,3	2223	17/1		
35 กกนี้	2230	2236	2336		1,87	
17 FFU	2224	2234,5	2248		2,47	
8,8 กาน	2215	2234,3	2454		3,04	
5 774	2214	2234,3	2455	U1 [P6]	3,15	
2,7 FFU	2207	2234,5	2455 2305 2330 2359	GI LI GI	2,96	
1 FFU	2223	2237,3	2373		2,40	
-		2228,7	2330			
909 HLM	2211				2,76	
410 MCU	2207	2234,5	2305		2,0	
245 MFU	2207	2228,3	2305		2,20	
AC TUN IS	2101		2305			
AC TUR III	2224		2227		1	
AC THE II	2223		2254		1	
AC THE IV	2235		2400		2	
вкв	2335	N20(50)-E		6,9R	760 *	
1981 май 09		9 HR 17624	K	COENTINO 131		(120)
Ha	0239	Ø248	0337	NO4 W56	2N	FILU
1-12 K3B	0245	0 25 0	9308		M2,6	
35 FFU	0247	0247	0249		1,76	
17 FFU	9246	0247,6	0250		2,44	
8,8 FFU	0246	0247,6	0251	U1,4 P9	2,73	
2,7 FFU	0246	0247,8	0251		2,54	
1,4 ГГЦ	0243	0248	>0253		2,28	
1 114	0240	0247,6	0254		2,64	
606 MLII	0242	0246,1	>0252		2,08	
410 MFIL	0246	0247	0249		2,53	
AC THE III	0246	V24/	-		2	
AC THE DCIM	9246	4	0249		_	
1981 MAÑ 10		Ø HR 17624	K	СОБЫТИЮ 132		(231)
Ha	0715	0717 2771	9759	N03 W75	1N	F
1-12 K3B	0712	0731	0751		M1,3	
35 FFU	0725	0738	0745		1,0	
9,4 ITU	0714	0740	6800		1,4	
5 กาน	0715	0730	9 743		1,11	
2,7 FFU	0714	0729,8	0749		1,52	
1 FFU	0714	9739	0740		0,90	
200 MFU	0714	0720,1	0731		1,08	
100 МГЦ	0718	6721,3	0732		3,95	
AC TUN II	0 718		0743		2	
AC THI IV	0723		0747		2	
BKB	0741	520(40)-W			830	

1981 MAN 10		Ø HR 17644		К СОБЫТИЮ 132		(231)
Hα					HET A	АННЫХ
1-12 K3B	1208	1256	1400		M3,5	
30-526 K3B	<1224:40	1228:45	1232:05	ì)1,61E	+5
35 FFIL	1212	1231,5	1303		2,79	
8,8 rru	1207	1232,8	>1400		3,40	
7 ГГЦ	1202	1231,3	1430	[P7]	3,45	
2,8 ГГЦ	1202	1232,0	1343		3,31	
810 MCU	1205	1227,4	>1332		2,60	
2,8 ГГЦ	1351	1353,7	1356	U0,6/2,8	2,77	
606 MCU	1343	1400,8	1407		1,85	
410 MCU	1345	1359,8	>1407		2,08	
AC TUN III	1237		1252		1	
AC TUTI IV	1302		1334		3	
AC THI IN	1325		1558		2	
AC THI III	1359		1401		3	
ВКВ	1239	N15(60)-E	·		1420	
1981 MAN 13				СР7] ∪0,6/2,8 К СОБЫТИЮ 133		(010)
Н _{ос}	0333	0350	0646	N10 E55	3B	EFIJU
1-12 K3B	0328	0425	0432		X1,5	
30-527 K3B	(0406:45	0415:30	0606:50)3,07E	+6
>300 K3B	0412		0430			
4-7 M3B					50 9	
БВ	(0403	0412	>0438			
35 FFU	0412	0412 0419 0418,2 0420,1 0418,3 0414,0 0426,6 0419,3	0432	P3,75	2,55	
8,8 rru	0330	0418,2	95 08		3,64	
3,75 ГГЦ 1 ГГЦ	0330	0420,1	0510	P3,75	3,68	
1 FFU	0 333	0418,3	0510		3,43	
500 MCU	0341	0414,0	0526		2.36	
200 МГЦ 100 МГЦ	0344	0426,6	0 529		2,48	
100 МГЦ	0348	0419,3	0535		2,46	
AC THI IS	0252				-	
AC INH IIIS	9359		9536		1	
200 MCU 100 MCU AC TUN IS AC TUN IIIS AC KOHT.	0352	N20(80)-E	0552		1	
BKB	0415			2,8R	1500	
1981 MAØ 14		Ø HR 17644		K COENTINO 133		(010)
Hα	9895	9845 9856 9848 9848,8 9848,8 9848,8 9856,2 9856 9858,1 9846,2 9858,6	0953	N20 E35	3N M2,8	EFIKU
1-12 K3B	0836	0856	0934		M2,8	
17-70 K3B	0845	0848	9 855			
15,4ГГЦ	0845	0848,8	0853		1,46	
9,4 ITU	0837	0 848,8	>0903		1,88	
2,8 IT II	0832	0848,8	9938	P3	2,27	
650 MCH	0831	0846,2	0 929		1,78	
500 MFIL	0 835	9856	9998	P0,5		
410 MTU	9839	9858,1	9718		3,11	
204 MTU	9838	9 846,2	9713		2,13	
TO THE TH	9832 9835	87.CP58	07ZY		2,72	
AC THE IV	A672		0 713		2	
AC THR III	9 839		0841		2	
AC THE II	0 844		9996		2	
NO TIME TEVE			0 944		3	
AC THE IIIS	0849		V/74		-	
AC TUIT IIIS BKB I3-2	0949 0900	N60(50)-E	V/74	3R	1170	

1981 NAM 16		● HR 17644	K	COENTHO 134		(220)
Ha	9753	9831 9846	1013	N11 E14	38	FHIU
1-12 K3B	0734	0859	0931		X1.1	
30-136 K3B	0858:24	0900:02	0932:24		3,77E	+5
35 rru	0813	0839,8	0953		2,63	_
11,8 TTU	0813	0839	1113		3,15	
8,8 TTI	0813	9838	0931	0,5 P5~9	3,32	
5 กาม	0810	0838	0940		3,34	
2,7 ୮୮ዚ	0810	0839,3	0933		3,15	
536 MCU	0812	0838,4	1024		2,48	
204 MCU	0816	0840,8	0904		2,85	
5,7 ML	9896	0818	9838		1,95	
810 MTU	0811	0819,9	1001	P0.8	2,71	
127 HCL	0819	0820	0825		2,20	
3 LL11	-	0900	_		2.51	
1 FFU	0 812	0900.4	>0904	P1	3,56	
204 MCU	-	0900			2,4	
100 MFIL	0819	0901	>0934		3.36	
AC THE III	0810		0 816		3	
AC THE IV	0812		1105		3	
AC TUIT II	0824		9849		2	
BKB	1042	360	•	>18R	1200×	
1981 ИОЛЬ 19	·	HR 17736	K	COBNTHO 135		(220)
		HR 17751				
H _{ox}	040B	9426	0500	S08 E68	1B	EK
••	0 528	0534	0 621	S29 W56	2B	FZ
	0 509	0523	0724	S08 E66	28	EJKY
		0538				
1-12 K3B	0415	0428	0451		M9,1	
	0 512	0537	0 717		X2,7	
30-164 K3B	0417:30	0425:10	>0425:41)1,68E	+5
30-423 K3B	0506:20	0533:50	>0600135)1,23E	+7
>300 K3B	0533:20	0535	0537:09			
	9558:39					
17 FFU	0424	0429,1	0432		3,09	
8,8 ГГЦ	9416	0429,1	9437	P5-9	3,26	
5 mu	0416	0429,3	9439		3,26	
2,7 FFU	0424	0430,0	9449		2,56	
2 ГГЦ	0425	0428,5	9449		2,89	
1 FFU	9 428	9429,7	0431		1,11	
35 ГГЦ	0510	0533,0	0750		2,99	
9,4 ITU	0 500	0535,4	9553		3,38	
5 rru	0503	0536,3	>0627	P5	3,48	
2,7 FFU	0506	0 536,8	> 0636		2,86	
1 FFU	9519	0535,6	0 552		2,15	
650 MCU	0514	0536,0	-		1,68	
100 MFU	0514	9 536 , 9	_		2,75	
35 TTII			-		0.00	
	9519	0559,0	-		2,98	
19,6 114	9519 9558	0559,0 0559,4	9619		3,64	
				P9	-	
19,6 ГГЦ	9558	0559,4	9619	P9	3,64	
19,6 ГГЦ 8,8 ГГЦ	9558 9597	0559,4 0559,3	9619 9619	P9	3,64 3,83	
19,6 ГГЦ 8,8 ГГЦ 5 ГГЦ	9558 9597 9597	0559,4 0559,3 0559,3	9619 9619 9619	P9	3,64 3,83 3,70	
19,6 ГГЦ 8,8 ГГЦ 5 ГГЦ 2,7 ГГЦ	9558 9597 9597 951 9	0559,4 0559,3 0559,3 0559,1	9619 9619 9619 9621	P9	3,64 3,83 3,70 3,42	

			474		_	
AC THE IIIS	0432		0715		2	
AC TUN IS	0442		1526		2	
AC THI IV	0 516		0 527		1	
	0541		9649		1	
	0 558		0715		2	
AC THU II	0534		0 55 0		2	
	0558		9699		3	
		*				
1981 ИЮЛЬ 20		● HR 17736		COBATHO 135		(220)
*						
Hox	1310	1322	1441	925 W75	1B	Y
· · · ·		1336				
1-12 K3B	1307	1329	1442		M5,4	
30-254 K3B	1307:15	1318:30	>1349:55	5)7,54E+	5
15.4 FFU	1311	1313,1	>1337		2,11	
8,8 rru	1309	1318,8	1416		2,86	
ร กาน	1307	1319,1	>1415	(P5)	3,18	
2,8 rru	1307	1319,5	1405	4, 6,	2,81	
1,4 FFU	1309	1321,6)14 0 9		2,11	
			1335		1,34	
536 MCU	1316	1319,3	1312		2	
AC THU III	1310					
	1334		1346	•	1 2	
AC THE IIIN	1313		1326			
AC THU II	1322		1354		2	
BKB	1913	S10(55)-W		_	87 0 ?	
1981 ИЮЛЬ 24		O HR 17760		K COBNTHO 136		(010)
н.	9747	9749	0811	816 E56	1N	EF
Н _{ос} 1-12 КЭВ	0745	9752	9896		M1.4	
30-136 K3B	0747:35	0748:30	0754:19		7,8E+	4
19,6 FFU	9747	9748,5	9756		1.82	•
8.8 ГГЦ	974B	9748,7	6752		2,32	
5 FF4	9748	074B,7	9753	P5	2,37	
	974B	0748,5	9753	1.5	1,85	
3,1 ГГЦ 1,4 ГГЦ	0747	0748,6	9755		●,48	
AC		EHMA HET	₩/30		* , 10	
AC	/1P/					
1981 ABFYCT (7	Ø HR 17777		K COBNTHE 137		(110)
H _{oc}	1901	1911	>2242	999 E25	1B	FU
1-12 K3B	1957	1916	1926		M3,9	
30-85 K3B	(1951:50	1952:50	2036)1,02E	+5
15,4 FFU	1902	1906,8	1922		2,28	
8,8 111					2,59	
7 [[]	1902	1984-8	1922			
	1902 1857	19 0 6,8	1922 1928		2.77	
	1857	1906,9	1928	P3-7	2,77 2,75	
ร กาม	1957 19 0 1	1906,9 19 0 7	1928 1925	P3-7	2,75	
5 เาน 2,8 เกน	1857 1901 1858	1906,9 1907 1907,2	1928 1925 2024	P3-7	2,75 2,77	
5 ГГЦ 2,8 ГГЦ 1,4 ГГЦ	1857 1901 1858 1903	1906,9 1907 1907,2 1907,1	1928 1925 2024 1920	P3-7	2,75 2,77 2,36	
5 ГГЦ 2,8 ГГЦ 1,4 ГГЦ 606 МГЦ	1957 1901 1858 1903 1907	1906,9 1907 1907,2 1907,1 1908,3	1928 1925 2024 1920 1921	P3-7	2,75 2,77 2,36 1,41	
5 ГГЦ 2,8 ГГЦ 1,4 ГГЦ 606 МГЦ 245 МГЦ	1857 1901 1858 1903 1907 1910	1906,9 1907 1907,2 1907,1 1908,3 1912,5	1928 1925 2024 1920 1921 1921	P3-7	2,75 2,77 2,36 1,41 1,95	
5 ГГЦ 2,8 ГГЦ 1,4 ГГЦ 606 НГЦ 245 НГЦ 15,4 ГГЦ	1857 1901 1858 1903 1907 1910	1906,9 1907 1907,2 1907,1 1908,3 1912,5 1921,6	1928 1925 2024 1920 1921 1921 1931	P3-7	2,75 2,77 2,36 1,41 1,95 1,86	
5 ГГЦ 2,8 ГГЦ 1,4 ГГЦ 606 МГЦ 245 МГЦ 15,4 ГГЦ 5 ГГЦ	1857 1901 1858 1903 1907 1910 1921	1906,9 1907 1907,2 1907,1 1908,3 1912,5 1921,6 1921,8	1928 1925 2024 1920 1921 1921 1931 1931		2,75 2,77 2,36 1,41 1,95 1,86 2,14	
5 ГГЦ 2,8 ГГЦ 1,4 ГГЦ 606 МГЦ 245 МГЦ 15,4 ГГЦ 5 ГГЦ 2,7 ГГЦ	1857 1901 1858 1903 1907 1910 1921 1921	1906,9 1907 1907,2 1907,1 1908,3 1912,5 1921,6 1921,8 1921,6	1928 1925 2024 1920 1921 1921 1931 1931	P3-7	2,75 2,77 2,36 1,41 1,95 1,86 2,14 2,30	
5 ГГЦ 2,8 ГГЦ 1,4 ГГЦ 606 МГЦ 245 МГЦ 15,4 ГГЦ 5 ГГЦ 2,7 ГГЦ 1,4 ГГЦ	1857 1901 1858 1903 1907 1910 1921 1921 1921 1921	1906,9 1907,2 1907,2 1907,1 1908,3 1912,5 1921,6 1921,6 1921,6 1921,6	1928 1925 2024 1920 1921 1921 1931 1931 1931		2,75 2,77 2,36 1,41 1,95 1,86 2,14 2,30 2,30	
5 FTU 2,8 FTU 1,4 FTU 606 MFU 245 MFU 15,4 FFU 5 FTU 2,7 FFU 1,4 FFU 410 MFU	1857 1901 1858 1903 1907 1910 1921 1921 1921 1921	1906,9 1907,2 1907,2 1907,1 1908,3 1912,5 1921,6 1921,8 1921,6 1921,6	1928 1925 2024 1920 1921 1921 1931 1931 1931 1930 1931		2,75 2,77 2,36 1,41 1,95 1,86 2,14 2,30 2,30 1,36	
5 FTH 2,8 FTH 1,4 FTH 606 MFH 245 MFH 15,4 FFH 5 FTH 2,7 FFH 11,4 FFH 410 MFH 245 MFH	1857 1901 1858 1903 1907 1910 1921 1921 1921 1920 1921	1906,9 1907,2 1907,2 1907,1 1908,3 1912,5 1921,6 1921,6 1921,6 1921,6	1928 1925 2024 1920 1921 1931 1931 1931 1931 1931 1931		2,75 2,77 2,36 1,41 1,95 1,86 2,14 2,30 2,30 1,36	
5 FTH 2,8 FTH 1,4 FTH 606 MFH 15,4 FTH 5 FTH 2,7 FFH 1,4 FFH 410 MFH 245 MFH 4C THI III,V	1857 1901 1858 1903 1907 1910 1921 1921 1921 1921 1921 1921 1921	1906,9 1907,2 1907,2 1907,1 1908,3 1912,5 1921,6 1921,8 1921,6 1921,6	1928 1925 2024 1920 1921 1931 1931 1931 1931 1931 1931 1931		2,75 2,77 2,36 1,41 1,95 1,86 2,14 2,30 2,30 1,36 1,60	
5 FTU 2,8 FTU 1,4 FTU 606 MFU 15,4 FTU 5 FTU 2,7 FFU 1,4 FFU 410 MFU 245 MFU AC THI III,V AC THI IV	1857 1901 1858 1903 1907 1910 1921 1921 1921 1920 1921 1921 1904 1907	1906,9 1907,2 1907,2 1907,1 1908,3 1912,5 1921,6 1921,6 1921,6 1921,6 1922,0	1928 1925 2024 1920 1921 1931 1931 1931 1931 1931 1931 1931	P1,4-2,7	2,75 2,77 2,36 1,41 1,95 1,86 2,14 2,30 1,36 1,60 3	
5 FTH 2,8 FTH 1,4 FTH 606 MFH 15,4 FTH 5 FTH 2,7 FFH 1,4 FFH 410 MFH 245 MFH 4C THI III,V	1857 1901 1858 1903 1907 1910 1921 1921 1921 1921 1921 1921 1921	1906,9 1907,2 1907,2 1907,1 1908,3 1912,5 1921,6 1921,8 1921,6 1921,6	1928 1925 2024 1920 1921 1931 1931 1931 1931 1931 1931 1931		2,75 2,77 2,36 1,41 1,95 1,86 2,14 2,30 2,30 1,36 1,60	

1981 ABCYCT		Ø HR 17777	K	СОБЫТИЮ 137		(110)
Ha	2025	2027	2056	S13 E06	SB	EF.
1-12 K3B	2023	2029	2035		M1,0	
15,4 ГГЦ	2025	2026,6	2035		2,45	
8,8 TTU	2025	2026,3	2031	U0,6 P9	2,66	
5 rru	2025	2026,8	2030		2,23	
2.7 CCII	2025	2027,8	2038		1,96	
1,4 FFU	2025	2028,1	2030		1,85	
606 MCII	2026	2027,6	2032		1,66	
410 MCU	2026 1259	2027,5	2033		2,88	
AC THI IN AC THI IV	1451		2235 2240		1 2	
A0 17111 24	1431		2270		2	
1981 СЕНТЯБР	ъ 05	O HR 17817	K	COENTINO 138		(010)
Hoc	2346	2359	0025	912 W66	IN	EJ
1-12 K3B	2355	0003	0014		M8,1	
30-224 K3B	2358:50	0001:30	0007:35		3,0E+5	5
17 FFU	2359	0001,6	0007		2,28	
9,4 CCU	2358	0001,7	>0004	P9	2,45	
2,7 ГГЦ	2359	2400	0004		1,28	
606 MLM	2359	0000,2	0 003		0,78	
208 MFIL	2358	0001,5	9996		1,95	
AC THU IIIS	2359		9996		1	
дс тип ІІ	8008		0 015		1	
1981 СЕНТЯБР	ზ 06	O HR 17830	K	COENTINO 138		(010)
Hat	2102	2112	2211	N08 E49	1N	FEJK
1-12 K3B	2106	2115	2134		M3,1	
30-139 K3B	2102:00	2109:45	2119:50		1,84E	-5
17 ГТЦ	2141	2142,4	2152		2,51	
9,4 ITU	2141	2142,4	2151	P9-17	2,51	
2,8 ITU	2141	2142,3	2152		2,0	
2 mu	2141	2142,5	2155		1,94	
AC THE III	2142		2148		1	
AC THE IV	2142		2200		2	
AC TUTI II AC TUTI IN	2148	1	2152		-	
AC IMII TH	2152		24 00		-	
1981 CEHTREP	ъ 9 7	O HR 17830	К	СОБЫТИЮ 138		(010)
Ha	% 07	O HR 17830	K 0111	COБЫТИЮ 138 N10 E41	SB	(010) EHJK
1981 CEHTREP H _{oc} 1-12 K3B				· · · · · · · · · · · · · · · · · · ·	SB M2,0	
H _{oc} 1-12 K3B 35 FFU	9952 9953 9954	9199 9956 9956	0111 0111 0102	N10 E41		
H _∞ 1-12 ⁻ K3B 35 ГГЦ 17 ГГЦ	9052 9053 9054 9053	9199 9956 9956 9955,1	9111 9111 9102 9103	· · · · · · · · · · · · · · · · · · ·	M2,0 2,47 2,90	
H _{oc} 1-12 ⁻ K3B 35 FTU 17 FTU 8,8 FTU	9952 9953 9954 9953 9953	9199 9956 9956 9955,1 9956	0111 0111 0102 0103 0124	N10 E41	M2,0 2,47 2,90 2,82	
H _{oc} 1-12: K3B 35: ITIL 17: ITIL 8,8: ITIL 5: ITIL	9052 9053 9054 9053 9053 9053	0100 0056 0056 0055,1 0056 0055,4	0111 0111 0102 0103 0124 0124	N10 E41	M2,0 2,47 2,90 2,82 2,40	
H _{oc} 1-12: K3B 35: ITI 17: ITI 8,8: ITI 5: ITI 2,7: ITI	9052 9053 9054 9053 9053 9053 9053	0100 0056 0056 0055,1 0055,4 0055,4	0111 0111 0102 0103 0124 0124 0123	N10 E41	M2,0 2,47 2,90 2,82 2,40 2,17	
H _{oc} 1-12: K3B 35: ITIL 17: ITIL 8,8: ITIL 5: ITIL 2,7: ITIL 1.4: ITIL	9052 9053 9054 9053 9053 9053 9053 9053	9199 9956 9956 9955,1 9955,4 9955,4 9956,2	0111 0111 0102 0103 0124 0124 0123 0125	N10 E41	M2,0 2,47 2,90 2,82 2,40 2,17 1,50	
H _∞ 1-12: K3B 35: ITIL 17: ITIL 8,8: ITIL 5: ITIL 2,7: ITIL 1.4: ITIL 606: MFIL	9052 9053 9054 9053 9053 9053 9053 9053 9054	0100 0056 0056 0055,1 0055,4 0055,4	0111 0111 0102 0103 0124 0124 0123 0125 0125	N10 E41	M2,0 2,47 2,90 2,82 2,40 2,17 1,50 1,76	
H ₀ 1-12 K3B 35 ITU 17 ITU 8,8 ITU 5 ITU 2,7 ITU 1.4 ITU 606 HTU AC THI IIIS	9052 9053 9054 9053 9053 9053 9053 9053 9054 9054	9199 9956 9956 9955,1 9955,4 9955,4 9956,2	0111 0111 0102 0103 0124 0124 0123 0125 0125	N10 E41	M2,0 2,47 2,90 2,82 2,40 2,17 1,50 1,76	
H _{oc} 1-12 K3B 35 ITU 17 ITU 6,8 ITU 5 ITU 2,7 ITU 1.4 ITU 606 MIU AC THII IIIS	9052 9053 9054 9053 9053 9053 9053 9053 9054 9054	9199 9956 9956 9955,1 9955,4 9955,4 9956,2	0111 0111 0102 0103 0124 0124 0123 0125 0104 0105	N10 E41	M2,0 2,47 2,90 2,82 2,40 2,17 1,50 1,76	
H ₆₂ 1-12 K3B 35 ITU 17 ITU 8,8 ITU 5 ITU 2,7 ITU 1.4 ITU 606 HTU AC THI IIIS	9052 9053 9054 9053 9053 9053 9053 9053 9054 9054	9199 9956 9956 9955,1 9955,4 9955,4 9956,2	0111 0111 0102 0103 0124 0124 0123 0125 0125	N10 E41	M2,0 2,47 2,90 2,82 2,40 2,17 1,50 1,76	

1981 СЕНТЯБ	РЬ 17	O HR 17836) K (COENTINO 139	(010
H _≪ 1-12 K3B	0525	9 556	0619	N12 W81	1N AF C7.2
30-86 K3B	0523:20	0523:40	0524:06		1,54E+3
9,4 CCU	0523	0523,7	0524		1,0
5 FFU	0523	0523,8	0524		1,0
1,4 FFU	0523	0523,8	0524		1,0
606 MLM	0523	0523,4	0524	P0,6	2,0
245 MFU	0523	0523,6	0524		1,23
3,7 rru	0545	0555	0 745		1,08
2 ՐՐԱ	9545	0 555	0745		0,60
9,4 TTU	0545	0610	0745		1,08
2,8 FFU	0545	0610,6	0783		1,04
AC THII IN	9 552		9648		<u>-</u>

1981 СЕНТЯБР	b 18	O HR 17853	K	COENTINO 139	(010
H _∞ 1-12 K3B	0128	0130	0136	N18 W05	SN E C5.5
30-139 K3B	0129:10	1032:25	0137:20		3.9E+4
17 FFU	0132	0132,5	0133		1.72
9,4 FFU	0129	0132,6	0137		1.79
3,75 [[]]	0129	0132,4	0135		2.05
2,7 FFU	0130	0132,7	· >0135	P2,7	2,26
2 LLI	0129	0132,8	8127		2,19
1 FFU	0130	0132,8	0143		1,51
606 HLM	0132	0132,1	0133		1,82
AC THE DCIM	0132		0152		1

1981 СЕНТЯБР	ь 19	O HR 17853	K	COENTINO 139	(010
 Н _{ос}	0540	0 551	9614	N08 E46	1B FI
1-12 K3B	0 548	0 553	0 602	·	M2,6
30-255 K3B	0550:10	0551:05	0558:43		8,1E+4
>300 K3B	0551:03		0551:19		
17 FFU	9 551	0551,3	0553		2,39
8,8 FFU	0551	0551,1	0554	P9	2,43
5 FTU	0551	0552,0	9553		2,21
2,7 ГГЦ	0551	0551,1	6553		1,90
1,4 ГГЦ	0551	0551,1	0553		1,71
1 FFU	9559	0551,4	0 554		1.56
606 MUL	0 551	0551	9552		1.79
410 MFII	9551	9551,1	0554		2.38
245 MC1	9551	0554.8	0 555		1.79
AC TUN IIIN	054 5		1555		2
AC THIT DC	9551		0555		1
AC THE I	0551		9694		1

1981 CEHTABI	°Ь 22	9 HR 17863	5 K	COBUTUO 140		(999
Hox	0834	9838 9845	0942	911 E68	1N	FEU
1-12 K3B	0 833	0845	0911		M1,4	
30-194 K3B	0834:35	0 844:20	9906:06		6,8E+4	١.
15,4 ГГЦ	0840	0843,3	0 855		1,84	
8,8 rru	0837	0845,3	0902		2,32	
5,2 fru	9 835	0845,5	6 9 6 8	P5,2	2,60	
3,1 111	0835	0 845,6	0900		2,21	
1,4 ГГЦ	0841	9846	0 858		1,43	
430 MCU	0 837	0 841,5	0855		2,49	
245 HFU	0840	0 841,1	0 846		1,70	
AC THE III	9 837		0901		3	
AC TUTT S	0838		0 849		2	
AC THE II	0849		0903		1	

1981 OKTREPL	9 7	● HR 17906	K	COBNTHIO 141	(126
Ha	2259	2311	2336	\$17 E83	1N
	2243	2308	0044		X3,6
		2301:35			>1,05E+7
>300 K3B	2255		-		
4-8 M3B					2,4 0,8
15,4 FFH	2253	2257,5	2305	5/15	3,66
8.8 111	2253	2257.6	0018		3,30
5 PPH	2253	2257,3	2305		2,79
2 1114	2250	2257.4			2,89
606 MLI	2254	2257.6	0018		2,89
200 MFIL	2255	2257.6			3,34
100 HTU	2255	2257.6			4,79
15.4 FFII	2305	2306,6			3.80
9,4 FTU	2250	2304,2		U1.4 P9	3,98
2,7 111	2250	2311.0		•	3,24
1,4 FTI	2305	2306.5	2316		2,78
606 MUI	2305	2304.8			3,0
410 MTI	2305	2304.8			2,46
200 HTI	-	2301,1	-		3,11
100 MTI		2301.3			4,69
AC THE ITTE	2238		2400		•
AC THE IV	2225		2400		3
AC THE III.V			2258		3 2 3
AC THE II	2259		2349		3
BKB	9959	S10(100)-W		>9R	>880*

1981 OKTABPL	12	● HR 17906		COBNITHIO 142		(333)
H _{oc}	0615	9629 9628		S18 E31	2B	IKU
1-12 K3B	0622	0636	0717		X3,1	
31-61 K3B	0614:05	0619:15	>0620:33)7,8E+	3
31-139 K3B	0716:35	0729.45	>0620:33 >0753:01)3,44E	
35 FFII	0627	0632	10777		4,08	
17 FFII	062 0	0627,7	>0747	U3 P17	4,49	
9.4 FFL	0620	9633,5	>0747 072 0		4,35	
.,	0020	0647,9	0,20		4,32	
ร กาน	962 9	9648,1	9747	112 ps	4,56	
2 เป็	9620	9632.0	0747 072 0	02 F J	4,14	
2 11 4	VO2.V	9651.5	0/20			
1 ГГЦ	962 9	9639,8	0720		4,00	
2 11 4	V02 V	A/4.7 A			4,3	
606 MUI	0/40	9643,6; 9634,5 9645, 9 9636,9 9637,3	0.750		4,84	
	0619	V034,5	W/58		4,72	
500 MCU	0618	V043,V	70/58		4,94	
234 МГЦ	0625	9636,0	6868		4,11	
100 MFU	9626	9637,3			4,65	
AC TUN IIIS	9616		1544		2	
AC THI IV	0625		1032		3	
AC TUN II	0627		9 715		3	
BKB 	0913	360		>1 0 R	>65 0 *	
1981 НОЯБРЬ	6 9	● HR 17989		OBNTHIO 143		(000)
Ha	1225	1229 1248		817 E17	2B	EIU
1-12 K3B	1231	1312	1317		M3,0	
31-113 K9B	1231:35	1239:00	1241:59		9.6E+	4
31-196 K3B	(1318:15	1239:00 1318:30	1336:16		>4,7E+	
9,4 FFU	1303	1313,2 1313,0 1313,5 1310,0	1332		2,79	•
5,2 FFIL	1231	1313.0	1451		2,92	
3 111	1231 1231 1302 1230	1313,5	1430	U5 P3	3,28	
53A MPII	1302	1316.6	1748	00 10	2,54	
234 MFIL	1238	1311,0	1406		3,13	
113 MCH	1242	1320,0	1347		2.30	
AC THII KOHT	1303	1320,0	1324			
BKB		NB0(30)-W		3,5R	2	
	1350			3,5K	560?	
1981 HOREPL		● HR 17992	KC	OENTHO 144		(000)
Hα	(2209	2210	>2223	N15 W47	2B	FEU.
4 40 600	0467	2217	0700			
1-12 K3B	2153	2219 2220			M5,0	
1-12 K3B 31-257 K3B	2153 2154:45	2202:10	2251+96		3,96E	+5
1-12 K3B 31-257 K3B 17 FFN	2153 2154:45 22 00		2251+96		3,96E	+5
1-12 K3B 31-257 K3B 17 FFU 9.4 FFU	2153 2154:45 22 00 2156		2251+96		3,96E- 2,60 3,04	+5
1-12 K3B 31-257 K3B 17 FFU 9,4 FFU 5 FFU	2153 2154:45 22 00 2156		2251+96	3-9	3,96E- 2,60 3,04 2,98	+5
1-12 K3B 31-257 K3B 17 FFU 9,4 FFU 5 FFU 2,7 FFU	2153 2154:45 22 00 2156		2251+96		3,96E 2,60 3,04 2,98 3,05	+5
1-12 K3B 31-257 K3B 17 FFU 9,4 FFU 5 FFU 2,7 FFU 1 FFU	2153 2154:45 22 00 2156	2207,0 2207,3 2207,1 2206,0 2216,0	2251 se6 2219 2228 2226 2234 2230		3,96E 2,60 3,04 2,98 3,05 2,23	+5
1-12 K3B 31-257 K3B 17 FFU 9,4 FFU 5 FFU 2,7 FFU 1 FFU 606 MFU	2153 2154:45 2200 2156 2209 2158 2156 2157	2207,0 2207,3 2209,1 2206,0 2216,0 2211,1	2251 se6 2219 2228 2226 2234 2230 2236		3,96E 2,60 3,04 2,98 3,05 2,23,	+5
1-12 K3B 31-257 K3B 17 ГГЦ 9,4 ГГЦ 5 ГГЦ 2,7 ГГЦ 1 ГГЦ 606 МГЦ	2153 2154:45 2200 2156 2209 2158 2156 2157 2156	2207,0 2207,3 2207,1 2206,0 2216,0	2251 s 66 2219 2228 2226 2234 2236 2236 236 2369		3,96E 2,60 3,04 2,98 3,05 2,23, 1,66 2,94	+5
1-12 K3B 31-257 K3B 17 ГГЦ 9,4 ГГЦ 5 ГГЦ 2,7 ГГЦ 1 ГГЦ 606 МГЦ	2153 2154:45 2200 2156 2209 2158 2156 2157 2156 2148	2207,0 2207,3 2209,1 2206,0 2216,0 2211,1	2251 s 6 2219 2228 2226 2234 2236 2236 236 2369 2152		3,96E 2,60 3,04 2,98 3,05 2,23,	+5
1-12 K3B 31-257 K3B 17 ГГЦ 9,4 ГГЦ 5 ГГЦ 2,7 ГГЦ 1 ГГЦ 606 МГЦ	2153 2154:45 2200 2156 2209 2158 2156 2157 2156 2148 2155	2207,0 2207,3 2209,1 2206,0 2216,0 2211,1	2251 s 66 2219 2228 2226 2234 2236 2236 236 2369		3,96E- 2,60 3,04 2,98 3,05 2,23, 1,66 2,94 2	+5
1-12 K3B 31-257 K3B 17 FFU 9,4 FFU 5 FFU 2,7 FFU 1 FFU 606 MFU 100 MFU MC TMN III	2153 2154:45 2200 2156 2209 2158 2156 2157 2156 2148	2207,0 2207,3 2209,1 2206,0 2216,0 2211,1	2251 s 6 2219 2228 2226 2234 2236 2236 236 2369 2152		3,96E 2,60 3,04 2,98 3,05 2,23 1,66 2,94 2	+5
1-12 K3B 31-257 K3B 17 FFU 9,4 FFU 5 FFU 2,7 FFU 1 FFU 160 MFU 100 MFU AC THU KOHT. AC THU IV	2153 2154:45 2200 2156 2209 2158 2156 2157 2156 2148 2155	2207,0 2207,3 2209,1 2206,0 2216,0 2211,1	2251 106 2219 2228 2226 2234 2236 2236 2236 2369 2152 2206		3,96E 2,60 3,04 2,98 3,05 2,23 1,66 2,94	+5
1-12 K3B 31-257 K3B 17 FFU 9,4 FFU 5 FFU 2,7 FFU 1 FFU 160 MFU 100 MFU AC THU KOHT. AC THU IV	2153 2154:45 2200 2156 2209 2158 2156 2157 2156 2148 2155 2155 2155	2207,0 2207,3 2209,1 2206,0 2216,0 2211,1	2251 s 06 2219 2228 2226 2234 2230 2236 2309 2152 2206 2230		3,96E- 2,60 3,64 2,98 3,05 2,23, 1,66 2,94 2	+5
1-12 K3B 31-257 K3B 17 FFU 9,4 FFU 5 FFU 2,7 FFU 1 FFU 606 MFU	2153 2154:45 2200 2156 2209 2158 2156 2157 2156 2148 2155 2155	2207,0 2207,3 2209,1 2206,0 2216,0 2211,1	2251196 2219 2228 2226 2234 2230 2236 2399 2152 2206 2239 2216		3,96E 2,60 3,04 2,98 3,05 2,23 1,66 2,94 2	+5
1-12 K3B 31-257 K3B 17 FFU 9,4 FFU 5 FFU 2,7 FFU 1 FFU 606 MFU 100 MFU AC THII KOHT. AC THII IV AC THII IV	2153 2154:45 2200 2156 2209 2158 2156 2157 2156 2148 2155 2155 2155 2155 2155	2207,0 2207,3 2209,1 2206,0 2216,0 2211,1	2251196 2219 2228 2226 2234 2230 2236 2369 2152 2206 2239 2216 2234 2220		3,96E 2,60 3,04 2,98 3,05 2,23, 1,66 2,94 2	•5

493ROH 1891		● HR 18027	Κ	COENTINO 145		(000)
H _{oc}	9653	0658 0732		N13 W21		
1-12 K3B	9653	0709	0747		M1,2	
31-196 K3B	0655:35	9656:55	9797:26		2,20E	+5
17 FFU	9656	0657,5	9712		2,31	
8.8 TTU	0656	9457 7	4740	U3 P9	2.63	
2.7 ГГЦ	9656	9656,8 9657,1	0709	55 . ,	2.68	
i rrii	9656	9657-1	10770	P1	2,82	
410 MFI	9656	9657,6	0709		2,20	
245 MCU	9657	0658,1	0709		2,60	
9,4 ITH	9656				2,04	
ั 3 เานี	9799	0704,8 0706,5 0704,3	10020		2,32	
500 FTI	0658	0704,3	10723		2,85	
8.8 111	9657				2,30	
1,4 FFU	9656	0749,8 0747,5	0826		3.90	
1,4 11 M	V0.30	0802,1	V020		3.75	
650 MCU	9656					
O'A LII M	V 030	9748, 9	_		2,52	
BC THE POLIT	9656	0802,2	A740		3,34	
AC TUN KOHT. AC TUN III			0718		. 1	
AC THI III	0657 0658		0710		2 2	
AC THE II	4700		071B			
AC THII IV	0 729		0744		1	
BKB	0743	N35(50)-W	9839	3,2R	2 57 0	
DIND		HOOTOO7 W		3,2R		
1981 ДЕКАБРЬ	94	O HR 18055	K	COBNTHID 146		(010)
H∝	1727 1726	1730 1734		N20 E52	SF	
1-12 K3B	1726	1734	175 0		£5,1	
31-87 K3B	1726:15	1727:55	1729:59		1,10E	+5
15,4 FTU	1726	1728,1	1730		1,92	
8,8 FFU	1727	1728,3	1729		2,26	
7 PPU	1726 1727 1724	1728,4	1731	P7	2,33	
5 MU	1726	1728,3	1732		2,14	
2,8 FFU	1726 1725	1728,1 1728,3 1728,4 1728,3 1728,0	1733		2,13	
AC	HE	Г данных				
1981 Д ЕКАБРЬ		● HR 18058	K	COENTINO 147		(220)
н Н _{ос}	1817	1825		N10 W16		FIKUZ
		1811				
		4646	2009		M5,2	
1-12 K3B	1854	1918				
31-290 K3B	1853:50	1918 1905:30			>4,91E	+5
1-12 КЭВ 31-290 КЭВ 15,4 ГГЦ	1854 1853:50 1903	1905:30 1910,1	1939:55 2011		1.97	+5
31-290 K3B	1853:50	1905:30			1.97	+5
31-290 K9B 15,4 ГГЦ	1853:50 1903	1905:30 1910,1 1919,6 1943,1	2011			
31-290 K9B 15,4 ГГЦ	1853:50	1905:30 1910,1 1919,6	2011		1,97 2,14	
31-290 K9B 15,4 ГГЦ	1853:50 1903	1905:30 1910,1 1919,6 1943,1	2011		1,97 2,14 2,114	
31-290 КЭВ 15,4 ГГЦ	1853:50 1903	1905:30 1910,1 1919,6 1943,1 1858,6	2011		1,97 2,14 2,114 1,69	
31-290 K3B 15,4 ГГЦ 8,8 ГГЦ	1853:50 1903 1857	1905:30 1910,1 1919,6 1943,1 1858,6 1909,8 1924,5	2011		1,97 2,14 2,114 1,69 2,26	
31-290 K3B 15,4 ГГЦ 8,8 ГГЦ	1853:50 1903 1857	1905:30 1910,1 1919,6 1943,1 1858,6 1909,8 1924,5	2011		1,97 2,14 2,114 1,69 2,26 2,51 2,49 2,04	
15,4 rru	1853:50 1903 1857	1905:30 1910,1 1919,6 1943,1 1858,6 1909,8 1924,5 1943,0 1858,6	2011	UO.4 P3	1,97 2,14 2,114 1,69 2,26 2,51 2,49 2,04	
31-290 K3B 15,4 ГГЦ 8,8 ГГЦ	1853:50 1903 1857	1905:30 1910,1 1919,6 1943,1 1858,6 1909,8 1924,5	2011	U0,4 F3 U0,6 P3 U0,4 P3	1,97 2,14 2,114 1,69 2,26 2,51 2,49 2,04	

606 MUU	1854	1858,6	2011	P0,6	2,57
		1911,0			2,11
		1920,3			1,89
		1943,5			2,30
245 MCU	1856,8	1856,8	2013		1,86
. •		1911,8			2,73
*		1921,5			2,34
		1944,B			2,59
AC THE KOHT.	1900		1913		2
BKB	2051	S05(80)-W		9,5R)72 0 *

1981 ДЕКАБР	ь 27	⊚ HR 18093	K	COBNTNO 148	([0]10)
H _≪	0155	0202 0245	0238	'S13 E18	1N	FIKL
	0 239	9255 9251	0340	816 E24	1N	FI
	(0243	0314	0457	S13 E16	1B	FKT
1-12 K3B	0158	9294	0457		C2,8	
	9246	9339	933 9		€5,3	
9,4 ୮ ୮ዟ	0200	0340,0	0 7 00		1,26	
3,75 FFU	9299	0247,2	0 54 0		1,11	
2 ITI	0155	0203, 0 0313,0	0 7 00		0,95 1,40	
1 LLM	0153	0203,2 0311,6	0 700		0,78 1,45	
410 MFII	0254	0300,6	0304		2,00	
245 MFU	0251	0252,3	0253		1,00	
AC THE III	0245		0247		1	
AC THE IV	9246		0 733		1	
AC TWN II	0250		93 00		2	
BKB	0327	830(80)-E		5,1R	1230	

1982 ЯНВАРЬ	92	● AR 3522	K	COSUTINO 149		(000)
Hac	(0616	9629	9642	N19 W88	1B	AGY
70	9619	0 616	0 632	N13 E03	SN	F
1-12 K3B	0601	9617	0629		M8,1	
31-359 K3B	0609:42	0611:09	0643:44 .		7,7E4	-5
300 K3B	0610:12		0612:07			
35 FF11	0611	0611,0	9614		2,41	
15.4 PPH	0609	0611,1	0 613	U0,6 P15	3,11	
8.8 771	0 6 0 9	0610,1	0614		2,97	
2,7 ГГЦ	0609	0611,1	9613		2,11	
606 MLII	0610	0610,8	0613		0,80	
200 MFU	9619	0610,9	9619		3,30	
AC THE III,V	0607		9618		3	
AC THE II	0613		0651		2	

1982 ЯНВАРЬ	30	● HR 18176		COEMTINO 150		(330)
H _{ox}	2325	2344	0148	814 E13	2B	FIKU
	2333	0005	9216	812 E06	18	BEF1J
1-12 K3B	2332	2358	0010		X1,1	
31-114 K3B	31D<0014:20	0014:55	0029:22)1,2E+4	
35 MJ	2351	2351 ,0	2356		2,17	
	2357	0007 ,0	0050		1,66	
9 ,4	2337	2351,4	00 25	U2 P9	3,22	
		0007,9			2,48	
5 NTU	2332	2351,7	0019		3,20	
2 FFU	2333	2352,1	0050		2,78	
		0008,2			3,18	
1 1114	2336	0007.9	0030	P1	3,52	
	*	2357,1			2,32	
606 HLII	2335	0009,0	00 27		2,88	
100 MFU	2337	2339,3	9933		>4,0	
•	2007	9017,0	*****		3.70	
AC TH TIT	2326	002,,0	>2400		2	
AC TH III AC THE IV	2338		2350		2	
BKB		N85(30)-E	2000	4,2R	560	
	4100	NOO COVY C		4,21	300	
1982 ЯНВАРЬ	31	● HR 18176	κ	COENTINO 150	Pr. 60-14-15-15-15-15-15-15-15-15-15-15-15-15-15-	(330)
Hac	1319	1323	1354	S12 E20	1B	U
1-12 K3B	1319	1333	1352		M2,5	•
31-291 K3B	1315:35	1330:35	1354 1352 1352:47		3,26E	+5
35 MI	(1330	1331,0	>1340		2.77	
11,8 FFU	1316 1315 1320 1318 1321	1330,9		P12	3,23	
9,5 rrนุ	1315	1331,0	1426 1415	1 12	3,03	
2,8 rrii	1778	1331,0	1335		2,55	
	1710					
1,5 FFN	1318	1331,5	1403		2,27	
810 MFU	1321	1322,3	1336 1336		2,95	
430 MFU)2,87	
113 нгц	1322	1322,4			3,54	
		1422	1447		3,32	
AC THE III	1319		1331		3	
AC TUTT KOHT.	1326		1438		2	
AC THE II	1328		1340		3	
1982 ФЕВРАЉ	01	HR 18176	K	COEMTINO 151		(230)
H _{oc}	1350	1407	>1609	S16 W09	3B	EUW
1-12 K3B	1339	1409	1620		X2,6	
31-141 K3B	<1418:45	1419:10	1443:07)6,4E+	4
31-61 K3B	1451:20	1451:40	1452:25		-	
35 FFU	1358	1403,7	1528		2,77	
11,8 TTH	1357	1403,7	1527	U0,8 [P12]	3,30	
8,4 ITH	1357 1355 1357	1403.0	1527)3,18	
2,8 ITH	1355	1404,0	1427		3,11	
810 HTH	1757	1402,5	>1427		2,57	
	1337		/172/		2,3/	
		1419,2	>1427		\n a.	
•	4727				>2,94	
430 MCH	1357	1403,0				
430 MCH	1357 1404	1403,0 1407,0	1413		4,67	
430 MCH	1357 1404 1330				4,67 2	
•	1357 1404 1330 C. 1408	1407,0	1413		4,67	

1982 ФЕВРАЛЬ	9 6	HR[18176		K COBNTHO 152	(016
Hα	2050	2056	2145	S17 W64	IN IN
	2050	2101	2118	S12 E38	18
1-12 K3B	2053	2101	2110		M6,5
31-61 K3B	(2110:50	2114:45	2123:59	')9,1E+3
31-61 K3B	2130:20	2130:50	2131:05		-
31-61 K3B	2139:45	2141:05	2142:20	•	-
15,4 ГГЦ	2055	2058,3	2115	U3-4/15,4	3,41
8,8 TTU	2055	2058,3	2111		3,20
5 กาน	2055	2058,3	2111		-2,80
2.7 FFU	2055	2058.1	2104		2,89
1,4 ГГЦ	2055	2056,3	2103		3,41
410 MFU	2058	2058,1	2163		1,46
245 HFU	2056	2056,8	2057		1,63
AC THE ILIN	2056	-	2357		2
AC THE III.V	2056		2106		2
AC THE IV	2059		2104		2

1982 ♦EBPA // b 6 6		Ø HR 18176	K	COENTIND 152		(010)	
Hac	2351	2356	0032,	816 W88	3B	EFHIR	
1-12 K3B	235 0	0002	00 12		H4,2		
17 FFU	2352	2357.8	0014		2.01		
9,4 TTU	2352	2357,4	0018		2,29		
5 TTU	2352	2457,2	0014	U1,4 [P5]	2,55		
3,75 FFU	2351	2356,8	0018	-	2,41		
1,4 FFIL	2353	2357,0	0012		1,71		
1 FFIL	2353	2355,4	0013		2,72		
410 HCIL	2355	2355.3	0010		1.46		
245 MCIL	2355	2356.8	0010		1.82		
35 FFIL	2354	0001.0	9938		1,49		
8.8 ITIL	2353	000 7.0	0016		2,28		
3.75 FFIL		0002.0		P3-4	2,41		
2.7 111	2352	0007.0	0017		2.41		
2 111	2351	909B.6	0020		1,99		
AC THE ILLY	2345	2300,0	2348		2		
AC THE IV	2355		2359		ī		
AC THE II	2355		0020		2		
Man	0007		0017		2		

1982 ФЕВРАЉ	98	● HR 18176	K	COBNTHO 153		(100
Hac	1204	1223 1252	1319	815 W88	119-	F
1-12 K3B	1245	1253	1258		X1,4	
31-545 K3B	(1249:55	1250:00	1310:19		>1,96	E+6
>300 K3B	1249:17		1256:30			
2.2 M3B					1,5	1
4-7 M3B					12,5	1,3
35 FFU	1248	1250,1	1303	U0,6/35	3,88	-
15,4 ITU	1249	1251,5	1302		3,48	
ร กาม	1249	1250,0	1302		3,11	
2,7 FTH	1248	1250,0	1300		2,99	
1,4 ГГЦ	1249	1250,1	1255	P1,4	3,04	
610 MTH	1249	1251,6	1559		2,43	
245 MCII	1249	1251,1	1256		>3,1	
127 HCIL	1249	1249,3	1258		1,79	
AC THE III,V	1246		1308		3	
AC THIS KOHT.	1247	•	1256		3	
AC THI IV	1248		1256		2 3	
AC TUN II	1250		1315		3	
BKB	1248	500 (40)-W			1305	

1982 ФЕВРАЛЬ	9 9	Ø HR: 19204	K	COENTIND 153	(100)
H _~	0 336	0339	0410	812 E5	1B EFIJ
1-12 K3B	0334	0342	0 346		M2,5
1 -12 K3B	0 357	0412	0432		X1,2
31-87 K3B	0335:25	0339:05	0346:03		9,6E+4
31-61 K3B	0357:55	0402:00	0403:56		3,8E+3
17 FTU	9338	0339,3	0406		1,64
9,4 FFU	0335	0339,3	9355		1,83
5 กาน	0336	0340,2	0343		1,77
2 FTU	0336	0340,3	0343		1,04
606 HLII	0339	0340,0	0341		2,10
35 ITU	0406	9407,9	0410		3,08
17 FFIL	9406	940 7,6	9412	110,6 P17	3,26
9,4 FFIL	0403	0407,5	0414		2,96
2 กาม	0404	0407,2	0413		2,28
606 MTU	0406	0407,2	0413		1,46
200 MFU	0406	0406,3	0457		3,34
100 MFU	0406	0406,3	0503		3,88
дс тип неклас.	0406		0413		2
NC THE THE DR	9496		0410		3
AC THE II(?)	0410		0412		1
AC THIT IS	0411		0530		1

1982 HAPT 97	7	• HR 18246		COBNTHID 154	((10)
Hos	0249	0250	0402	N19 W53	2B EFI	IKUZ
1-12 K3B	0245	0315	0327 ·		X2,7	
31-292 K3B	0246124	0304:46	>0305)2,6E+5	
35 FFIL	0258	0308,0	0312		3.04	
9,4 TTU	0256	0308,2	0344	U0,4 [P9]	3,67	
2 ГГЦ	0256	0309,5	0344		3,20	
410 MFU	0301	0309,5	0328		2,23	
200 MFU	0302	0 307,7	0522		2,66	
100 MCU	0307	-	0407		>4,0	
35 FFU	0418	0427,0	0444		2,0	
2 ГГЦ	0404	0431,5	9639	P2	3.26	
100 МГЦ	0411	0435,0	9455		1,72	
AC TUN IV	0245		9635		2	
AC TUTT IS	0250		0 744		2 3	
AC TUN II	0306		0331			
	0420		0442		2	
BKB	0357	N10(50)-W			1140	

1982 MAPT 30)	• HR 18280	K	COENTINO 155		(E1310)
Hoc	0521	9 524	0 741	N12 W12	2B	EFIJKUNZ
	0 523	9529	0 556	N11 W00	1B	EFIKSUM
1-12 K3B	0519	9 542	0554		X2,8	
31-547 K9B	(0521:14	0 543:16	-	>6.5E+6		+6
>300 K3B	0 536:58		0543			
17 ГГЦ	0521	0537,3	0 555°		3,12	
9,4 ГГЦ	0532	0537,5	9639	[P9]	3,28	
3,75 mu	0521	0540,3	9631		3.11	
2 FFII	0522	0543,1	0710	U0.4 P2	4.01	
410 MCIL	0533	0540,8	>0606		2,37	
245 MFU	0536	0540.8	>0606		4.64	
100 MCII	0538	0541.6	1142		4,76	
AC TUR III	0522		0528		1	
	0539		0543		3	
AC TUT II	0537		0 558		3	
AC THIT KOHT.	9541		9736		2	
AC THI IV	0529		0929		3	

1982 MAPT 31	Ø HR 1826		K COENTINO 155		([1]10)	
Hax	0042	0042	>0052	N12 W26	1N F	
1-12 K3B					C2,8	
35 rru	0042	0042,0	0044		1,86	
8,8 TTU	0041	0042,4	0046	U2 P9	2,75	
2	0041	0042,0	0044		1.46	
610 MFU	0041	0041,8	0042	•	3.30	
410 MCU	0041	0041,8	0042		2,30	
AC TAM III,V	0041	•	0044		3	

1982 ИЮНЬ 63		⊘ HR 18405	K	СОБЫТИЮ 156		(110)
Hox	1141		1248		2B	BJ
1-12 K3B	1138	1146	1152		X8,0	
31-551 K3B	1140:32	1143:31	>1204:41)4,5E	+7
)300 K3B	1142		1157			
2,2 M3B					314	
4-7 M3B					305	30
EB						
35 FF II	1142	1143,5	1218	U3/35	4,62	
15,4 ITU	1141	1143,3	1210		4,11	
8,8 TTU	1141	1143,3	1211		3,78	
5 ГГЦ 2,8 ГГЦ	1141 1141	1143,3	1211		3,60	
1,4 FFU	1142	1143,5 1145,0	1210	U0,6 P1,4	3,35 4,30	
610 MFU	1142	1143,5	121 0 1219	UW,0 F1,4	3.96	
245 MCU	1141	1143,3	1207		4,95	
204 MFH	1142	1143.0	1207		4,52	
AC THE III,V	1142	114014	1147		3	
AC THE IV	1142		1228		3	
AC THE II	1144		1213		3	
BKB	1203	N20(30)-E			1330	
1982 ИЮНЬ 04		• HR 18405		COBNITIO 156		(110)
Har	1313	1316	1342		1B	HK
H∝ 1-12 K3B	- 1311	1333	1345		X5,9	
31-115 K3B	1311:50		1314:39		7,4E+	
31-61 K3B	1317:47)1324: <i>0</i> 8		>8,7E+	-3
EB	1326	1331	1336			
35 FT1	1323	1328,2	1403	/35	3,72	
19,6 TTU	1323	1328,3	1403		3,49	
8,4 FFU	1312	1328,4	1403		3,37	
2,8 FTU	1324	1328,5	1347		2,77	
930 MCIL	1323	1340,0	1400		3,61	
35 FFU	1419	1421,3	1435	00 4 44 0	2,73	
11,8 771	1419	1420,8	1435	P8,4-11,8	3,14	
8,4 ГГЦ 2,8 ГГЦ	1419 1419	1420,8 1421.5	1435 1436		3,13 2,61	
930 MCU	1419	1424,0	1433		2,31	
AC TAU III	1319	1727,0	-		1	
AG 1911 III	1333		1342		2	
AC THE IA	1335		1359		2	
AC TUN III	1412		1428		2	
1982 MIDHS 05		Ø HR 18405		COENTINO 156		(116)
H _{oc}	9614	9615			1N	FJW
1-12 K3B	9612	0624	9793	000 2.10	X1,1	
31-364 K3B	0613:31		>0649:06		>3,0E⋅	
>300 K3B	0615:30		9616:36		,	-
35 FT II	0614	9615,7		1/35	3,28	
15,4 FFU		9616,9	9636	27 00	3,11	
9,4 FTU	9614 9614	9616,1	9636		3,11	
้ร กานี		0616,3	9627		2,61	
2 กาน	0614 0615	0615,9	0621		2,40	
950 MCU	0613	0615,1	9615		1,83	
909 LL.M	9615	0 615,7	9616		3,14	
AC TUN III						
AC IAII III	0611 0626		0 612 0627		1 3	

1982 ИЮНЬ 05	•	9 HR 18405	K	COBNTUIO 156		(110)
H _{ok} 1−12 K3B	9726 9725	0730 0730	9755 9741	507·E46	2B M7,1	EFĦĨ
31-62 K3B	0741:34	0741:50	9744:26			
	0751:46	0752:36	0753:16		-	
17 FFU	0726	0727,9	0738		3,20	
9,4 FFU	0726	0728,0	9752	U2 P9	3,39	
5 FFIL	0727	0728,5	0733		3,04	
2 FFU	0726	9727,8	0740		2,28	
1 TTU	0729	0729,4	9738		3,10	
500 MFH	0726	0729 ,0	0744		2,50	
AC THE TIIN	8728 8712	9736,8	0743 0730		2 ₁ 19	
AC THE III	9728 9733		9731 9746		2 3	

1982 ИЮНЬ 0	5	Ø HR 1840	5 K	COBNTHO 156	(1	10)
Hoc	1626	1633	1957	S10 E25	2B	EFU
1-12 K3B	1627	1637	1644		X12,0	
31-263 K9B	(1636:48	1639:21)1738:19)1,4E+7	
31-200 K3B	1814:06	1814:44	1814:53)1,2E+4	
4-7 M3B					35 6	
BB	1632	1634	1637			
35 FTU	1630	1634,2	1644		3,88	
15,4 ITU	1630	1634,1	1641	U0,4 P15	3,95	
9,4 ITIL	1625	1633,8	1640		3,77	
5 FFU	1630	1633,3	1641		3,50	
2,7 ГГЦ	1630	1634,1	1641		3,52	
1,4 ftu	1629	1632,1	1701		3,50	
410 MTU	1633	1633,8	1641		2,30	
245 МГЦ	1634	1653,1	1641		3,43	
15,4 ГГЦ	1806	1809,5	1837		2,30	
		1817,6			2,28	
8,8 FFU	1755	1804,8	1910		2,67	
		1815,0			2,89	
1,4 FFIL	1746	1802,8	1935		3,26	
		1815.1			3,32	
610 MFU	1746	1803.8	1948	P0.6	4,30	
		1816.3		P0.6	4.60	
245 MCII	1746	1804.5	1916		3,08	
		1816,5			3.04	
AC THI III	1632		1640		2	
AC TUT II	1634		1716		3	
AC THE IV	1636		1820		3	
до тип конт	1646		1808			
AC THE IC	1655		1855		2	
AC THE IIIS	1702		1821		5	
AC TAN III	1747		1748		1 2 2 2 2	
	1755				2	
дс тип іч	1700		1855		4	

1982 ИЮНЬ 27		O HR 18430	к	COENTINO 157		(910)
	···				2N	н
H _{OC} 1-12 K3B	1025 1019	1925 1926	1045 1035	N15 W90	M1.9	n
1-12 N3B 31-62 K3B	1020:21	1921:30	1029:02)2.7E+4	١.
6,1 TTU	1020	1021.8	1027		0.90	
2,7 ГГЦ	1020	1020,0	1021		1,00	
AC		EHMA HET				
aan maa vitoo itta aan aann agan naa aare aten een een ekki kiis kiis ki	o Title There there are the same array of the table tiller and	. مناه بادار دید داده می بری برید داده افاد داده داده دید درد. . مناه درد داده دید بری بری برید داده افاد داده داده درد درد در درد درد درد درد درد درد در				
1982 ИОЛЬ 08	·	● HR 18474	K	COENTINO 158		(340)
Hoc	0650	0 653	0721	N10 E89	1N	ADF
1-12 K3B	0639	9658	0718		M8,8	
35 TTU	9645	9647,8	0 805		2,63	
17 FTU	0644	0 647,8	0 655	P9-17	3,69	
9.4 FFIL	9645	9647,8	0 656		3,10	
5 7711	9649	9648,1	0 702		2.70	
2,7 FFII	0643	0647.8	0702		2,34	
1-4 FF11	0647	9648,3	9653		1,11	
AC THI IN	0547		9796		1	
1982 VIDNS 09	- 100 AN AN SEE SEE THE THE SEE SEE SEE SEE	● HR 18474	 K	COENTIND 158		(340)
	,					KZ
Hox	0720	6737	0816	N18 E76	3B X9.8	NΔ
1-12 K3B	0728	0 742	0752		A7,8	
>300 K3B	0735:10	A222 . OA	0741:00		>3.9E+	,
31-552 K9B	0724:59)0916:15 0947	N11 E72*	1B	,
H	(0832*	9855*		MII E/Z×	X1,1	
1-12 K3B	0 829	9994	0943			
31-62 K3B	0856:11	0 856:28	0 856:46		1366 >21	
2,2 M3B						
4-7 M3B					33 1	, 3
35 FFU	0735	0735,0			2,91	
17 FFU	0734	9737,0	0746	140 # FDD3	3,53	
9,4 FTU	0732	0737,0	0804	U0,5 [P9]	3,60	
3,75 TTU	9732	0737,3	0804		3,33	
2 FTIL	0733	0737,3	0757		3,20	
500 MTU	0734	9737,5	9755		2,54	
200 MFU	9734	0736,6	6868		4,67	
100 МГЦ	0734	0735,7	0751		5,08	
15 ГГЦ	0 819	0 834,9	0 919		2,12	
		0 857,7			2,05	
9,4 ITIL	0819	0834,9	>0927	P9	2,41	
3,75 fTU	0819	0857,3	>0929		2,16	
2 ГГЦ	0819	0857,5	>0924		1,82	
204 MTU	0835	0857,8	0 939		1,79	
AC THE TILLY	0734	• -	0743		3	
AC THE IV	0736		9829		1	
	0902		1013		3	
80 THE TT	0743		0817		3	
מעו אוו אוו	V/70					
AC TUN II AC TUN IN	Ø828		1656		1	

HARNMEN MRNHABOILBAH OTT *

1982 ИЮЖ 12		● HR 18474	1	COENTINO 158		(340)
H _{ox}	0900	0918	1215	N11_E36	38	BEFIKIUN
1-12 K3B	0915	0955	1052	•	X7,1	
31-401 K3B	0 932:36	0945:57	>1141:37		>4,1E+	7
15 FFU	9912	0921,0	-		3,0	
9,4 FFU	0912	092 0,9	_	P9	3,05	
3,74 FFU	0707	0921,6	-		2,72	
2 1114	0912	0921,6	_		2,26	
1,4 FFU	0919	0921,6	_		1,98	
15 FFH	-	0945,7	8957		3,48	
9,1 FFU	0912	0945.7	1030	U0.4 P9		
3 LL#	0912	0952,5	1033		3,35	
610 MFU	_	0950.6	_		2,08	
410 MFU	-	0950.8	-		1.83	
245 MCU	-	9951	-		1,91	
204 MFH	0931	0943.7	1200		2,36	
100 MTU	0748	0949,4	0953		3,85	X
15,4 FFIL		1013,5	-		2,81	
5 FFIL		1011.0	-		3.00	
2,7 FTH	_	1013,8	_	U6,4 P3	3,08	
410 MTH	_	1014,6	-	00,77.0	1,98	
245 MFH	_	1013,3	-		2,23	
AC THE III,V	9998	,.	0910			
AC THE IV	0915		1006		3	
AC THE II	0944		0 958		_	
BKB	1203	S10(180)-E		>1 0 R	>730×	

1982 ИЮЛЬ 17		● HR 18474	K	COENTINO 159		(100
H _{&}	1028	1032	1117	N14 W33	218	E
1-12 кэв	1028	1035	1042		X3,2	
15.4 FTU	1031	1034,5	1955		3,11	
8.8 FFIL	1031	1033,6	1955		3,11	
5 กาน	1030	1033,6	1955	[P5]	3,15	
2.7 ITH	1031	1034.6	1055		3,08	
930 MCII	1031	1033.6	1114		2,22	
410 MCII	1032	1037.0	1041		2,48	
245 MCII	1035	1037,3	1041		3,64	
204 MTU	1035	1036,5	1135		2,73	
AC THE III	1032		1039		2	

1982 ИОЛЬ 2	2	● HR 1847	4 K	COBILTIN	160	(230
Ha	1648	1707	1751	N16	W89	1N	
~	1724	1727	1748	N20	W59	SF	
	1733	1733	1742	N29	W86	SF	
1-12 K3B	1649	1734	1831			M4,9	
31-143 K3B	1639:55	1657:36	>1658:13)1,4E+5	
31-62 K3B	1734:18	1735:10	1742:39			7243	
15,4 FFU	1651	1658,9	1740			1,60	
8,8 rru	1651	1658,8	1740			1,86	
2.8 TTU	1645	1700,0	1810			2,61	
1,4 FFU	1651	1700.0	1728			2,34	
410 MCU	1651	1700,0	1705			2,30	
245 MCU	1652	1654,5	1706			2,78	
AC THE IV	1646		1700			3	
AC THE I	1649		1745			1	
AC THE III	1653		1730			2	
AC THE II	1720		1730			2	
BKB	1720	N25(90)~W		3	. AR	1820	

1982 ABFYCT 1	.4	● HR 18511	. K	COEMITMO 161	(110)
Ha	9596	9597	0 525	N11 W63	19	EFKV
1-12 K3B	9595	0509	0514		M4,1	
32-143 K3B	<0509:38	0510:05	0517:02		>3,9E+4	
35 FTU	9597	0507,0	0515		1,41	
8.8 rru	0506	0507,5	9516	U0,4 P9	3,30	
2.7 FFH	9596	0507,6	9521		2,94	
606 MFU	050 7	0507,9	0518		2,55	
410 MFIL	9597	0508,3	0 525		2,00	
100 MFH	9596	0507,2	9521		3,97	
AC THE III.V	9596		9 515		3	
AC THE II	9511		9536		2	

1982 СЕНТЯБРЬ	04	● AR 3886	K	COFNTMO 162		(120)
H _{oc}	0025	0029	0120	N12 E38	29	EFJKU
1-12 K3B	0024	00 53	0115		M6,4	
17 FFU	9945	0048,1	0 132		1,36	
8.8 TTII	0045	0047,8	0135		1,70	
5 กาม	0045	0047,B	00 53		1,83	
2 1111	0043	0047,7	9953		1,83	
610 MCII	0047	004B,3	99 56		1,60	
245 MCII	0046	0048.0	0056		3,51	
100 MCII	0046	0047.3	0100		3,99	
AC THE III.V	0045	•	0054		2	
AC THE II	0056		0117		3	
AC TUN IN	0117		0131		1	
вкв	0324	360		5,2R	990?	

1982 CEHT9B	Pb 04	• AR 3886	K	COBNTHO 162		(120)
	0424	0430	0742	N12 E33	3N	EHIJKLTU
1-12 K3B	0130	0400	0 6 00		M4,0	
9,4 CCU	(0400	0435,0	6919		1,94	
3.75 FFIL	(0400	0435.0	>0840		1,98	
2.9 7711	(0357	0430.0	1037		1.81	
410 MFIL	0420	0423	0426		1,74	
AC THI IS	0400		0530		1	

1982 НОЯБРЬ	22	0 AR 3994	K	COBNITION 163		(120)
H _≪	1208	1210	1225	908 W34	SN	D
1-12 K3B	1220	1224	1229		M2,0	
32-63 K3B	1219:55	1220:02	1220:15		-	
32-332 K3B	1222:12	1223:18	1228:45		1,7E+	5
>300 K3B	1223:11		1226:28			
35 FFU	1223	1223,3	1227		2,18	
8,4 FTU	1223	1223,3	1233	U0,8 P8,4	2,51	
5 rru	1223	1223,3	1233		2,38	
808 MCIL	1223	1223,5	-		1,79	
245 MCU	1223	1224,6	1234		3,54	
113 МГЦ	1222	1223,4	1228		4,28	
AC THE III	1219		1228		3	

1982 НОЯБРЬ :	22	• AR 3994	'K (COBUTHO 163		(120
Hoc	1514	1817	1826	S11 W36	1N	F
1-12 K3B	1656	1659	1765		M1.8	
	1739	1743	1749		H4,7	
	1741	1828	2020		M7.3	
32-62 K3B	1533:40	1533:14	1534:10		416	
32-90 K3B	1537:44	1537:53	1539:26		2,1E+3	
33-233 K3B	(1702:00	1702:08	1704144)6,7E+3	
15,4 PFU	1804	1866,5	1826		2,61	
		1814,5			2,84	
8,8 ITI	1804	1896,5	1826		2,93	
		1814,6			3,15	
5 ML	1804,6	1806,5	1826		3,04	
		1814,6			3,30	
2,7 በግዚ	1804	1806,5	1826	U0,4 P2,7	3,91	
		1815,1			3,45	
1,4 FFU	1804	1806,8	1827		3,57	
		1814,3		P1,4	3,89	
610 MFU	1804	1805,6	1826		2,48	
		1814,8			2,85	
410 MCU	1804	1805,0	1826		1,92	
		1814,5			2,79	
245 HFU	1804	1806,1	1817		2,81	
		1812,6			1,61	
AC THI III,V	1740		1745		3	
AC THI IV	1743		1941		2	
BKB	(2030	-			>620	

H _{OC} 1109 1120 1132 S96 W54 1N DF 1-12 K3B 1116 1126 1126 1126 M1,2 31-61 K3B 1107:34 1108:14 1108:52 31-140 K3B 1111:08 1111:35 1112:52 3093 31-61 K3B 1113:35 1115:26 1116:54 30843 31-225 K3B 1117:58 1120:57 1123:05 7101 35 ГГЦ 1059,0 1118,6 1125,0 2,20 11,8 ГГЦ 1059,0 1118,6 1125,0 U0,6 P12 2,28 5 ГГЦ 1118,1 1119,0 1125,6 2,08 1,4 ГГЦ 1118,1 1119,0 1125,6 2,34 950 МГЦ 1103,2 1118,5 1126 2,19 650 МГЦ 1103,2 1118,5 1126 12,19 650 МГЦ 1111,3 1118,6 1118,9 3,89 ДС ТИП III 1118 1119 1119 3 1982 HOREP5 26	1982 НОЯБРЬ		• AR 3994		COENTINO 163		(120)
31-146 K3B 1107:34 1108:14 1108:52 31-140 K3B 1111:08 1111:35 1112:52 3093 31-125 K3B 1113:35 1115:126 1116:154 3843 31-225 K3B 1113:58 112:57 1123:05 7101 35 CTN 1059;0 1118;0 1125:0 U0,6 P12 2,20 11,8 CTN 1059;0 1118,1 1119,0 1125:0 U0,6 P12 2,20 11,8 CTN 1118,1 1119,0 1125:0 U0,6 P12 2,20 11,4 CTN 1118,1 1119,0 1125:0 U0,6 P12 2,20 1,4 CTN 1118,1 1119,0 1125:0 U0,6 P12 2,20 U0,7 U0,7 U0,7 U0,7 U0,7 U0,7 U0,7 U0,						. 1N	DF
31-40 K3B 1111:08 1111:35 1112:52 3093 31-61 K3B 113:35 1115:26 1116:54 3093 31-225 K3B 1117:58 1120:57 1123:05 7101 35 [T] 1057,0 1118,6 1125.0 2.20 11.8 [T] 1057,0 1118,1 1119.0 1125.0 2.20 5 [T] 118,1 1119.0 1125.5 2.00 2,7 [T] 1118,1 1119,0 1125.5 2.00 1,4 [T] 1092,4 1118,1 1119,0 1125.5 2.00 1,4 [T] 1102,4 1118,1 1119,0 1125.5 2.00 1,4 [T] 1103,2 1118,5 1124 2.334 2.351 13 [T] 113 [T] 1118,1 1119,0 1125.5 2.34 2,34 2.34 2,50 [T] 1118,1 1119,0 1125.5 2.00 1,4 [T] 113 [T] 1118,5 1124 2.32 1,7 [T] 113 [T] 1118,5 1124 2.331 1,755 1,76 [T] 113 [T] 1118,5 1124 1.755 1,755 1,76 [T] 1118,1 1119,0 1125,0 2.34 1,7 [T] 1111 1118 1119,0 1125,0 2.34 1,7 [T] 1119,0 1125,0 2.34 1,1 [T] 2344 2344 1 1,1 [11111111111111111111111111111111	1-12 K3B	1116	1126	1126		M1,2	
31-25 K3B 1113:35 1115:26 1116:54 3843 31-225 K3B 1117:58 1120:57 1123:05 7101 35 [TR 1059;0 1118,6 1125;0 2,20 11,8 [TR 1059;0 1118,6 1125;0 U0,6 P12 2,20 11,8 [TR 1059;0 1118,1 1119,0 1125,6 2,04 2,7 [TR 1118,1 1119,0 1125,6 2,04 1,4 [TR 1118,1 1119,0 1125,6 2,08 1,5 [TR 111] 1118 1118,5 1126 2,02,19 1,7 [TR 111] 1118 1118,5 1126 2,02,19 1,7 [TR 111] 1118 1119,7 1119,7 3,89 1,1 [TR 111] 1118 1119,7 1119,7 3,89 1,1 [TR 111] 1118 1119,7 1119,7 3,89 1,1 [TR 111] 1118 1119,7 3,89 1,1 [TR 111] 1119,7 3,99 1,1 [TR 111] 1119,7 [TR 111] 1119,7 3,99 1,1 [TR 111] 1119,7 [TR 111] 11	31-61 K3B	1107:34	1108:14	1108:52			
35 [TI] 1657,0 1118,6 1125,0 U0,6 P12 2,28 11,8 [TI] 1657,0 1118,1 1119,0 1125,5 2,04 2,7 [TI] 1118,1 1119,0 1125,6 2,08 1,4 [TI] 1118,1 1119,0 1125,6 2,08 1,4 [TI] 1118,1 1119,0 1125,6 2,34 950 HT] 1103,2 1118,5 1126 32,19 950 HT] 1103,2 1118,5 1126 12,19 950 HT] 1103,2 1118,5 1124 1,75 113 HT] 1111,3 1118,6 1118,9 3,89 AC TWI 111 1118 1119 3 17982 HDREP6 26 AR 3994 K CODENTWO 164 (222) How 0230 0236 0419 S12 HB7 IN EF 1-12 K3B 0210 0253 0531 X4,5 32-557 K3B 0217:52 0233:22 0504:31 X4,5 33-557 K3B 0217:52 0235:3 0255:1 X3,78 3 [TI] 0235,1 0235,3 0255:1 U0,4 P9 3,93 5 [TI] 0235,1 0235,3 0255:1 U0,4 P9 3,93 5 [TI] 0235,1 0235,3 0255:1 U0,4 P9 3,93 1 [TI] 0219 0232,4 0359 3,33 1 [TI] 0219 0235,1 0235,3 0255:1 2,61 100 HT] 0226 035-3 0255:1 2,61 100 HT] 0234 0023 3 156 20 17 [TI] 02337 0336 0336 0337 0024,0 0337-3 3,75 [TI] 02337 0336,4 0346,0 33,70 3,75 [TI] 02337 0002,7 0046,4 3,20 17 [TI] 02337 0002,7 0046,4 3,20 17 [TI] 02337 0002,7 0046,4 3,20 17 [TI] 02337 0002,7 0046,4 3,20 190 HT] 02340 0034 3 1 1 11 11 2344 100000000000000000000000000000000000	31-140 K3B		1111:35	1112:52		3093	
35 [TI] 1657,0 1118,6 1125,0 U0,6 P12 2,28 11,8 [TI] 1657,0 1118,1 1119,0 1125,5 2,04 2,7 [TI] 1118,1 1119,0 1125,6 2,08 1,4 [TI] 1118,1 1119,0 1125,6 2,08 1,4 [TI] 1118,1 1119,0 1125,6 2,34 950 HT] 1103,2 1118,5 1126 32,19 950 HT] 1103,2 1118,5 1126 12,19 950 HT] 1103,2 1118,5 1124 1,75 113 HT] 1111,3 1118,6 1118,9 3,89 AC TWI 111 1118 1119 3 17982 HDREP6 26 AR 3994 K CODENTWO 164 (222) How 0230 0236 0419 S12 HB7 IN EF 1-12 K3B 0210 0253 0531 X4,5 32-557 K3B 0217:52 0233:22 0504:31 X4,5 33-557 K3B 0217:52 0235:3 0255:1 X3,78 3 [TI] 0235,1 0235,3 0255:1 U0,4 P9 3,93 5 [TI] 0235,1 0235,3 0255:1 U0,4 P9 3,93 5 [TI] 0235,1 0235,3 0255:1 U0,4 P9 3,93 1 [TI] 0219 0232,4 0359 3,33 1 [TI] 0219 0235,1 0235,3 0255:1 2,61 100 HT] 0226 035-3 0255:1 2,61 100 HT] 0234 0023 3 156 20 17 [TI] 02337 0336 0336 0337 0024,0 0337-3 3,75 [TI] 02337 0336,4 0346,0 33,70 3,75 [TI] 02337 0002,7 0046,4 3,20 17 [TI] 02337 0002,7 0046,4 3,20 17 [TI] 02337 0002,7 0046,4 3,20 17 [TI] 02337 0002,7 0046,4 3,20 190 HT] 02340 0034 3 1 1 11 11 2344 100000000000000000000000000000000000	31-61 K3B	1113:35	1115:26	1116:54		3843	
35 [TI] 1657,0 1118,6 1125,0 U0,6 P12 2,28 11,8 [TI] 1657,0 1118,1 1119,0 1125,5 2,04 2,7 [TI] 1118,1 1119,0 1125,6 2,08 1,4 [TI] 1118,1 1119,0 1125,6 2,08 1,4 [TI] 1118,1 1119,0 1125,6 2,34 950 HT] 1103,2 1118,5 1126 32,19 950 HT] 1103,2 1118,5 1126 12,19 950 HT] 1103,2 1118,5 1124 1,75 113 HT] 1111,3 1118,6 1118,9 3,89 AC TWI 111 1118 1119 3 17982 HDREP6 26 AR 3994 K CODENTWO 164 (222) How 0230 0236 0419 S12 HB7 IN EF 1-12 K3B 0210 0253 0531 X4,5 32-557 K3B 0217:52 0233:22 0504:31 X4,5 33-557 K3B 0217:52 0235:3 0255:1 X3,78 3 [TI] 0235,1 0235,3 0255:1 U0,4 P9 3,93 5 [TI] 0235,1 0235,3 0255:1 U0,4 P9 3,93 5 [TI] 0235,1 0235,3 0255:1 U0,4 P9 3,93 1 [TI] 0219 0232,4 0359 3,33 1 [TI] 0219 0235,1 0235,3 0255:1 2,61 100 HT] 0226 035-3 0255:1 2,61 100 HT] 0234 0023 3 156 20 17 [TI] 02337 0336 0336 0337 0024,0 0337-3 3,75 [TI] 02337 0336,4 0346,0 33,70 3,75 [TI] 02337 0002,7 0046,4 3,20 17 [TI] 02337 0002,7 0046,4 3,20 17 [TI] 02337 0002,7 0046,4 3,20 17 [TI] 02337 0002,7 0046,4 3,20 190 HT] 02340 0034 3 1 1 11 11 2344 100000000000000000000000000000000000	31-225 K3B	1117:58	1120:57	1123:05		7101	
11.8 TT 1059, 0			1118,6	1125.0		2,20	
5 FTU 1118,1 1119,0 1125,6 2,08 1,4 FTU 1118,1 1119,0 1125,6 2,08 1,4 FTU 1118,1 1119,0 1125,6 2,34 950 MTU 1102,4 1118,5 1126)2,19 650 MTU 1103,2 1118,5 1124 1,95 113 MTU 1111,3 1118,6 1119,9 3,89 AC TWI III 1118 1118 1119,0 1119,3 3 1982 HOREPL 26 AR 3994 K COENTWO 164 (222) Hox 0230 0236 0419 512 W87 IN CEFUKU 0207 0212 0226 N10 W78 IN EF 1-12 K3B 0210 0253 0531 3,4,5 32-557 K3B 0217:52 0233:22 0504:31)4,86+6)300 K3B 0229:20 0235:53 22,6 4-8 H3B				1125.0	116-6 P12	2.28	
2.7 TIL 1118,1 1119,0 1125,6 2,08 1,4 TIL 1118,1 1119,0 1125,6 2,34 750 MTIL 1102,4 1118,5 1126 12,19 650 MTIL 1103,2 1118,5 1124 1,95 113 MTIL 1111,3 1118,6 1119,9 3,89 AC TWIN III 1118 1119, 3 1982 HORIEPE 26		1118.1	1119.0	1122.5	,	2.04	
1,4 TTIL 1118,1 1119,0 1125,6 2,34 750 MTR 1102,4 1118,5 1126 12,19 650 MTR 1103,2 1118,5 1124 1,95 113 MTR 1111,3 1118,6 1119,9 3,89 AC TWIL III 1118 1119,0 1119,9 3,89 AC TWIL III 1118,6 1119,9 3,89 AC TWIL III 1118,6 1119,9 3,89 AC TWIL III,V 0225 0236 0417 0418,6 AC TWIL III,V 0227 0236 0417 0418,6 AC TWIL III,V 0227 0235,3 0255,1 AC TWIL III,V 0229 0235,3 0255,1 AC TWIL III,V 0229 0235,3 0255,1 AC TWIL III,V 0229 0235 3,95 AC TWIL III 0234 0446 0459,1 AC TWIL III,V 0229 0235 3,95 AC TWIL III,V 0234 0446 0447 0446 0447 AC TWIL III,V 0234 0446 0447 0446 0447 AC TWIL III 0334 0446 0447 0446 0447 AC TWIL III 0334 0446 0447 0446 0447 AC TWIL III 0337 0446,0 0446 0447 0446 0447 AC TWIL III 0337 0446,0 0446 0447 0446 0447 AC TWIL III 0337 0446,0 0446 0447 0446 0447 AC TWIL III 0334 0446 0447 0446 044			1119-8	1125.6			
113 M°IL 1111, 3 1118, 6 1119, 7 3,89 AC TWII III 1118 1119 3 17982 HDREPL 26			1119.0	1125.A			
113 M°IL 1111, 3 1118, 6 1119, 7 3,89 AC TWII III 1118 1119 3 17982 HDREPL 26				1126			
113 M°IL 1111, 3 1118, 6 1119, 7 3,89 AC TWII III 1118 1119 3 17982 HDREPL 26				1124			
AC TMIN III				1119 9			
H _{oc} 0230 0236 0419 S12 W87 1N CEF_JKU 0207 0212 0226 N10 W78 1N EF 1-12 K3B 0210 0253 0531 X4,5 32-557 K3B 0217:52 0233:22 0504:31 X4,5 32-557 K3B 0217:52 0235:53 22,6 33-6 33.88 32-557 32-6 33.88 32-6 33.88 32-557 32-6 33.88 32-6 33.88 32-557 32-6 33.88 32-6 32-6 32-6 32-6 32-6 32-6 32-6 32-6			1110,0	•			
H _{oc} 0230 0236 0419 S12 W87 1N CEF_JKU 0210 0226 N10 W78 1N EF_JKU 1-12 K3B 0210 0253 0531 X4,5 3	AC INH III						
H _{oc.} 0230 0236 0419 S12 W87 1N CEFJKU 1-12 K3B 0210 0253 0531 X4,5 32-557 K3B 0217:52 0233:22 0504:31				K (COBNITION 164		(222)
1-12 K3B	Hoc	0230	9236	0419		1N	CEFJKUY
1-12 K3B	••	0207	0212	0226	N10 W78		EF
3300 K3B 0229120 0235153 4-8 H3B 22,6 15,4 TT 0235,1 0235,3 0255,1 3,88 15,8 TT 0235,1 0235,3 0255,1 10,4 P9 3,73 5 TT 0235,1 0235,3 0255,1 10,4 P9 3,73 5 TT 0216 0239,3 0336 3,38 1 TT 0219 0232,4 0359 3,33 410 MT 0235,1 0235,3 0255,1 2,59 245 MT 0235,1 0235,3 0255,1 2,61 100 MT 0221 0240,5 0332 3,75 AC THI 1 0226 0235 2 AC THI 10 0226 0350 3 AC THI 11 0229 0235 3 BKB 0756 N00(35)-W -	1-12 K3B	9219	€253	0 531		X4,5	
4-8 M3B 15,4 ГГЦ 0235,1 0235,3 0255,1 3,68	32-557 K3B	0217:52	0233:22	0504:31		>4,BE+	5
15,4 ITH 0235,1 0235,3 0255,1 3,88 8,8 ITH 0235,1 0235,3 0255,1 U0,4 P9 3,73 5 ITH 0235,1 0235,3 0255,1 J,78 2 ITH 0216 0239,3 0336 3,38 1 ITH 0219 0232,4 0359 3,33 410 MFH 0235,1 0235,3 0255,1 2,59 245 MFH 0235,1 0235,3 0255,1 2,59 245 MFH 0235,1 0235,3 0255,1 2,61 100 MFH 0221 0240,5 0332 3,95 AC THIN I 0226 0350 3 AC THIN III,V 0226 0350 3 AC THIN III,V 0229 0235 3 AC THIN III 0234 0250 3 BKB 0756 N00(35)-W - 1982 AEKABPb 07 AR 4007 K COISMITMB 166 (233) Hot 2336 2336 235130 2352:41 00342:9 1,8E+7)300 K3B 2340:00 0023 4-8 M3B 2338:13 0023:33 156 20 4-8 M3B 2338:13 0023:33 156 20 3 THI 2337 2358,6 0052,8 4,28 9,4 ITH 2337 0000,7 0107,0 3,71 2 ITH 2337 0000,7 0107,0 3,71 2 ITH 2337 0000,7 0107,0 3,71 500 MFH 2337 0000,7 0107,0 3,73 500 MFH 2337 0000,7 0107,0 3,75 AC THIN III 2332 2344,7 0036,4 4,85 100 MFH 2344 2340 2344,7 0036,4 4,85 100 MFH 2344 00030 3 AC THIN III 2332 2344 00030 3 AC THIN III 2334 00033 3	>300 K3B			0235:53			
15,4 ITIL	4-8 M3B					22,6	
8,8 ГГЩ 0235,1 0235,3 0255,1 U0,4 P9 3,73 5 ГГЩ 0235,1 0235,3 0255,1 3,78 2 ГГЩ 0216 0239,3 0336 3,38 1 ГГЩ 0219 0232,4 0359 3,33 410 МГЩ 0235,1 0235,3 0255,1 2,59 245 МГЩ 0235,1 0235,3 0255,1 2,61 100 МГЩ 0221 0240,5 0332 3,95 ДС ТИП IV 0226 0350 3 ДС ТИП IV 0226 0350 3 ДС ТИП III,V 0229 0235 3 ДС ТИП III 0234 0250 3 ДКС ТИП III 0234 0250 046 519 M86 1B FU 1-12 K3B 2336 2352 4040 047 X2,8 32-559 K3B (2335:30 2352:41)0034:29)1,8E+7)300 K3B 2340:00 0023 4-8 M3B 2338:13 0023:33 156 20 35 ГГЩ 2337 2358,6 0052,8 4,28 9,4 ГГЩ 2337 2358,6 0052,8 4,28 9,4 ГГЩ 2337 2358,8 0110,0 U0,5 P9 4,39 3,75 ГГЩ 2337 0000,1 0100,0 3,37 500 МГЩ 2330 2344,7 0034,4 3,20 200 МГЩ 2330 2344,7 0034,5 3,20 200 МГЩ 23340 2344,7 0034,5 3,95 ДС ТИП III 2332 2352 2342 2344 1 ДС ТИП IV 2340 00030 3 ДС ТИП III 2334 00023 3		0235.1	0235.3	0255.1		3.88	
5 FTH 0235,1 0235,3 0255,1 3,78 2 FTH 0216 0239,3 0336 3,38 1 FTH 0219 0235,4 0359 3,33 410 MFH 0235,1 0235,3 0255,1 2,59 245 MFH 0235,1 0235,3 0255,1 2,61 100 MFH 0221 0240,5 0332 3,95 AC THI IV 0226 0235 2 AC THI IV 0226 0350 3 AC THI III,V 0229 0235 3 AC THI III 0234 0250 3 BKB 0756 N00(35)-W 1982 REKAEPL 07				0255.1	UG.4 P9		
2 FFIL 0216 0239,3 0336 3,38 1 FFIL 0219 0232,4 0359 3,33 410 MFIL 0235,1 0235,3 0255,1 2,59 245 MFIL 0235,1 0235,3 0255,1 2,61 100 MFIL 0225,1 0235,3 0255,1 2,61 1100 MFIL 0221 0240,5 0332 3,75 AC THI I V 0226 0235 2 AC THI IV 0229 0235 3 AC THI II, V 0229 0235 3 BKB 0756 N00(35)-W - 1982 AEKAEPL 07				0255.1			
1 FT II							
410 MFIL 0235,1 0235,3 0255,1 2,59 245 MFIL 0235,1 0235,3 0255,1 2,61 100 MFIL 0221 0240,5 0332 3,95 AC TURI I 0226 0235 2 AC TURI IV 0226 0350 3 AC TURI III,V 0229 0235 3 AC TURI III 0234 0250 3 BKB 0756 N00(35)-W - 1982 REKASPb 07					*		
245 MFIL 0235,1 0235,3 0255,1 2,61 100 MFIL 0221 0240,5 0332 3,95 AC THIN I 0226 0235 2 AC THIN IV 0226 0350 3 AC THIN III,V 0229 0235 3 AC THIN III 0234 0250 3 BKB 0756 N00(35)-W - 1982 AEKASPb 07	· · · · · ·						
100 HFN 0221 0240,5 0332 3,95 AC THR I 0226 0235 2 AC THR III, 0226 0350 3 AC THR III, 0229 0235 3 AC THR III, 0234 0250 3 BKB 0756 N00(35)-W - 1982 AEKABPЬ 07							
AC THIN IV 0226 0235 2 AC THIN IV 0226 0350 3 AC THIN III, V 0229 0235 3 AC THIN III 0234 0250 3 BKB 0756 N00(35)-W - 1982 AEKASPb 07 AR 4007 K COENTHID 166 (233) Hoc 2341 2351 0046 S19 M86 1B FU 1-12 K3B 2336 2354 0047 X2,8 X2,8 32-559 K3B (2335:30 2352:41 >0034:29 >1,8E+7 >300 K3B 2340:00 0023 X2,8 4-8 M3B 2339:13 0023:33 156 20 35 ITIL 2339 2344,0 0346,0 >3,70 17 ITIL 2337 2358,6 0052,8 4,28 9,4 ITIL 2337 2358,8 0110,0 U0,5 P9 4,39 3,75 ITIL 2337 0000,7 0107,0 3,71 2 ITIL 2337<			-	-			
AC THR III, V 9226 9235 3 AC THR III, V 9229 9235 3 AC THR III, V 9224 9235 3 AC THR III 9234 9259 9259 3 AC THR III 9234 92351 9046 S19 M86 1B FU 1-12 K3B 2336 2354 9047 X2,8 32-559 K3B 22352:30 2352:41 9034:29 1,8E+7 3300 K3B 2340:00 9023 4-8 M3B 2339:13 9023:33 156 20 35 ITU 2339 2344,0 9046,0 13,70 17 ITU 2337 2358,6 9052,8 4,28 9,4 ITU 2337 2358,6 9052,8 4,28 9,4 ITU 2337 2358,8 9110,0 U0,5 P9 4,39 3,75 ITU 2337 9000,7 9107,0 3,91 2 ITU 2337 9000,1 9100,0 3,37 500 MTU 23340 2344,7 9036,4 4,85 100 MTU 2343,5 2359,5 9034,5 3,95 AC THR III 2332 2342 2344 1 AC THR III 23340 9030 3 AC THR III 2344 9023 3	-		0240, 5			_	
AC TWIN III, V 0234 0250 3 BKB 0756 N00(35)-W - 1982 REKABPL 07	AC INN I					- 4	
RC TWIT II 0234 0756 N00 (35) - W -	AC INH IA	9226				3	
BKB	MC INU III-A	6229					
1982 REKASPЬ 07	AC AND II	9234				3	
Hot 2341 2351 0046 S19 W86 1B FU 1-12 K3B 2336 2354 0047 X2,8 32-559 K3B (2335:30 2352:41)0034:29 >1,BE+7 >3000 K3B 2340:00 0023 4-8 M3B 2338:13 0023:33 156 20 35 ITU 2339 2344,0 0346,0 >3,70 17 ITU 2337 2358,6 0052,8 4,28 9,4 ITU 2337 2358,6 0052,8 4,28 9,4 ITU 2337 2358,8 0110,0 U0,5 P9 4,39 3,75 ITU 2337 0000,7 0107,0 3,91 2 ITU 2337 0000,1 0100,0 3,37 500 MTU 2337 0000,1 0100,0 3,37 500 MTU 2337 0002,9 0046,4 3,20 200 MTU 23340 2344,7 0036,4 4,85 100 MTU 2340 2347, 0036,4 4,85 100 MTU 2342 2344 1 BC TMIN IV 2340 0030 3 BC TMIN IV 2344 0023 3	BKB	9 756	Nee(35)-4) 		-	
Hox 2341 2351 0046 S19 M86 1B FU 1-12 K3B 2336 2354 0047 X2,8 32-559 K3B (2335:30 2352:41 0034:29)1,8E+7)300 K3B 2340:00 0023 4-8 M3B 2338:13 0023:33 156 20 35 ITH 2337 2358,6 0052,8 4,28 9,4 ITH 2337 2358,8 0110,0 U0,5 P9 4,39 3,75 ITH 2337 0000,7 0107,0 3,71 2 ITH 2337 0000,7 0107,0 3,75 500 HTH 2337 0000,1 0100,0 3,37 500 HTH 2340 2344,7 0036,4 4,85 100 HTH 2340,5 2359,5 0036,5 3,795 AC TMIT IVI 2330 0030 3 BC TMIT IVI 2340 0030 3 BC TMIT IVI 2344 0023 3	1982 ДЕКАБРЬ	• •7	• AR 4007	K			(233)
1-12 K3B 2336 2354 0047 X2,8 32-559 K3B (2335:30 2352:41)0034:29)1,8E+7)300 K3B 2340:00 0023 4-8 M3B 2338:13 0023:33 156 20 35 ITH 2339 2344,0 0346,0)3,70 17 ITH 2337 2358,6 0052,8 4,28 9,4 ITH 2337 2358,8 0110,0 U0,5 P9 4,39 3,75 ITH 2337 0000,7 0107,0 3,91 2 ITH 2337 0000,1 0100,0 3,37 500 MTH 2337 0000,1 0100,0 3,37 500 MTH 2337 0000,1 0100,0 3,37 500 MTH 2340 2344,7 0036,4 4,85 100 MTH 2340,5 2359,5 0036,5 3,95 AC TWH III 2332 2344 1 AC TWH IV 2340 0030 3 AC TWH II 2344 0030 3	Hox	2341	2351	0046		1B	FU
32-559 K3B			2354	0047			
4-8 M3B 2338:13 0023:33 156 20 35 ITH 2339 2344,0 0346,0)3,70 17 ITH 2337 2358,6 0052,8 4,28 9,4 ITH 2337 2358,8 0110,0 U0,5 P9 4,39 3,75 ITH 2337 0000,7 0107,0 3,91 2 ITH 2337 0000,1 0100,0 3,37 500 MTH 2337 0000,1 0100,0 3,37 500 MTH 2340 2344,7 0036,4 3,20 200 MTH 2340 2344,7 0036,4 4,85 100 MTH 2343,5 2359,5 0036,5 3,95 AC TWIT III 2332 2344 1 AC TWIT IV 2340 0030 3 AC TWIT II 2344 00330 3	32-559 K3B	(2335:30	2352:41	>0034:29)1,8E	+7
35 ITIL 2337 2344,0 0346,0)3,70 17 ITIL 2337 2358,6 0052,8 4,28 9,4 ITIL 2337 2358,6 0110,0 U0,5 P9 4,39 3,75 ITIL 2337 0000,7 0107,0 3,91 2 ITIL 2337 0000,1 0100,0 3,37 500 MFL 2337 0000,1 0100,0 3,37 500 MFL 2337 0000,7 0046,4 3,20 200 MFL 2340 2344,7 0036,4 4,85 100 MFL 2345,5 2359,5 0034,5 3,95 AC TMIL III 2332 2335 2 2335 2 2344 1 2342 2344 1 2344 00330 3 RC TMIL II 2344 00330 3 3	>300 K3B	2340:00		9923			
35 FTH 2339 2344,0 0346,0)3,70 17 FTH 2337 2358,6 0052,8 4,28 9,4 FTH 2337 2358,8 0110,0 U0,5 P9 4,39 3,75 FTH 2337 0000,7 0107,0 3,91 2 FTH 2337 0000,1 0100,0 3,37 500 MFH 2337 0000,1 0100,0 3,37 500 MFH 2337 0002,9 0046,4 3,20 200 MFH 2340 2344,7 0036,4 4,85 100 MFH 2340,5 2359,5 0034,5 3,95 AC TWIT III 2332 2335 2 2335 2 2344 1 2342 2340 0030 3 RC TWIT II 2344 0023 3	4-B M3B	2338:13		0023:33		156	20
17 ITH 2337 2358,6 0052,8 4,28 9,4 ITH 2337 2358,8 0110,0 U0,5 P9 4,39 3,75 ITH 2337 0000,7 0107,0 3,91 2 ITH 2337 0000,1 0100,0 3,37 500 MTH 2337 0000,1 0100,0 3,37 200 MTH 2337 0002,9 0046,4 3,20 200 MTH 2340 2344,7 0036,4 4,85 100 MTH 2345,5 2359,5 0034,5 3,95 AC TWIT III 2332 2335 2 2335 2 2344 1 2342 2344 1 2342 2344 1 2344 00330 3 3 AC TWIT II 2344 0023 3		2339	2344,0	9346,9		>3,70	
2 [TI] 2337 0000,1 0100,0 3,37 500 MI] 2337 0002,9 0046,4 3,20 200 MI] 2340 2344,7 0036,4 4,85 100 MI] 2343,5 2359,5 0034,5 3,95 AC THI III 2332 2342 2344 1 AC THI IV 2340 0030 3 AC THI II 2344 0023 3		2337		0052.8		4.28	
2 [TI] 2337 0000,1 0100,0 3,37 500 MI] 2337 0002,9 0046,4 3,20 200 MI] 2340 2344,7 0036,4 4,85 100 MI] 2343,5 2359,5 0034,5 3,95 AC THI III 2332 2342 2344 1 AC THI IV 2340 0030 3 AC THI II 2344 0023 3		2337	2358.8	0110.0	U0.5 P9		
2 [TI] 2337 0000,1 0100,0 3,37 500 MI] 2337 0002,9 0046,4 3,20 200 MI] 2340 2344,7 0036,4 4,85 100 MI] 2343,5 2359,5 0034,5 3,95 AC THI III 2332 2342 2344 1 AC THI IV 2340 0030 3 AC THI II 2344 0023 3		2337			, -		
500 MFU 2337 0002,9 0046,4 3,20 200 MFU 2340 2344,7 0036,4 4,85 100 MFU 2343,5 2359,5 0034,5 3,95 AC TWN III 2332 2335 2 AC TWN IV 2340 0030 3 AC TWN II 2344 0023 3		2337	•				
200 MFL 2340 2344,7 0036,4 4,85 100 MFL 2343,5 2359,5 0034,5 3,95 AC TWI III 2332 2335 2 2342 2344 1 AC TWI IV 2340 0030 3 AC TWI II 2344 0023 3						-	
100 MFU 2343,5 2359,5 0034,5 3,95 AC TWIN IXI 2332 2335 2 2344 1 AC TWIN IV 2340 0030 3 AC TWIN IXI 2344 0023 3		2337					
AC TWH III 2332 2335 2 2342 2344 1 AC TWH IV 2340 0030 3 AC TWH II 2344 0023 3		23 70 2747 F	2377,/ 7750 F				
2342 2344 1 AC THI IV 2340 0030 3 AC THI II 2344 0023 3			2337, 3				
AC THR IV 2340 0030 3 AC THR II 2344 0023 3	AC IMU III						
RC THR 11 2344 0023 3							
BKB 2403 S10(60)-₩ >1060							
	BKB	2493	S10(60)-	į.		>1 06 €	

1982 ДЕКАБРЬ	13	● AR 4026	KC	OFLITHD 167		100)
H _{oc}	0 318	0 326	0402	997 E50	2B	FUZ
1-12 K3B	9320	0330	0410		NB,3	
32-559 K3B	0320:52	0325:43	0347:34		1,6E+6	
>300 K3B	0324:32		9328:38			
35 rru	0324,0	0326,0	0330,€		2,77	
15,4 ГГЦ	0322,6	0325,8	0407,3	U0,6 P15.4	3.52	
9,4 TTU	0320,0	0325,8	0345,0		3,29	
3,75 FTIL	0319	0 325,8	6343		2,52	
1,4 TTU	0323	9326,5	9335		2,30	
610 MFII	9324	0326,6	0331		1,95	
245 MCU	0323	0325,6	0327,8		3,20	
100 MFU	0 323	_	0329,4		>4,00	
AC THE III,V	0 323		0330		3	
AC THII KOHT.	9325		9328		_	

1982 ДЕКАБРЬ	15	• AR 4026	ĸ	COENTINO 168		(120)
 Н _{ос}	0150	0159	6248	509 E24	2B	FHILUY?
1-12 K3B	0 155	020 2	9238		X12,9	
БВ		0 159				
15,4 rru	0 157	0201,3	9232	U3,8 P15	4,23	
3,75 ITU	0156	9201,6	9221		3,64	
1,4 ITH	0157	9290,6	0230		4,34	
410 MTL	0158	0200,3	0232			
245 MFU	0157	0159,8	0 218		4,20	
288 MFH	8157	0200,5	8234		14:00	
AC THE IV	0156		0224		3	
AC TUN II	0156		9227		3	
AC THE III	0158		0201		3	

1982 ДЕКАБРЬ	15	9 AR 4026	K	COEMITME 168	(:	120)
H _≪ 1-12 K3B	1620 1620	1621 1634	1749 1639	S10 E15	1B	KUZ
32-406 K3B	1626:19	1632:40	1650:44		X5,0 1.3E+7	
>300 K3B	1630:44		1636		-,	
15,4 FFU	1630	1632,0	1650	U2,7/15	3,49	
8,8 TTU	1627	1631,3	1645		3,48	
2,7 FFH	1627	1632,0	1642		2,92	
610 MTU	1629	1632,6	1654		3,15	
410 MFU	1630	1631,3	1646		2,92	
245 MFU	1630	1632,6	1645		4,41	
AC THE III,V	1631		1639		3	
AC THR IV	1632		1650		2	
AC TUT II	1632		1656		2	

1982 JEKAB F	ъ 17	● AR 4025	K	COENTUR 169	(120
Hoc.	1820	1857	2019	507 W20	3B-	UZ
1-12 K3B	1821	1857	1940		X10,1	
32-63 K3B	1818:49	1819:31	1820:15		-	
32-559 K3B	(1854:40	1857:10	>2 00 2:19		>1,5E+7	
>300 K3B	1856:44		1901			
БВ	1853	1856	1900			
15,4 ГГЦ	1851	1854,6	1935	U3/15	3,60	
9,4 FFU	1850	1854,8	1900		3,59	
2,7 ГЦ	1849	1854,1	1904		3,28	
1,4 FFU	1850	1854,5	1914		4,66	
410 FFU	1852	1854,8	1933		2,87	
245 MFU	1855	1856,5	1935		3,64	
AC THE IV	1852		2002		2	
AC TWN II	1854		1917		2	

1982 ДЕКАБР	. 18	● AR 4026	16 (COBUTMO 169		120)
Ha	0 822	0 825	0 856	510 W20	1B	EFZ
1-12 K3B	9 818	0824	0840		X1,2	
32-299 K3B	0817:31	0822:02	0838:12		1,6E+6	
>300 K3B	9821:43		0823:38			
35 ITU	9 817	0 822, 0	9842		2,77	
8,8 ITU	9819	9828,1	0 839	U1,4 P9	2,98	
5 ITU	9 819	0828,1	0 839		2,92	
3 TTU	0 817	0822,0	9857	U1,4 P3	3,08	
1,4 111	0 816	0828,1	9835		2,48	
650 MTIL	9 816	0824,5	9851		3,16	
410 HTU	0 816	0817,5	0 828		2,28	
204 HTU	9816	0 823,5	0 842		3,48	
100 HFU	9820	0826,1	0 834		4,77	
AC THE III	0 816		0 836		3	
AC THE II	9832		0 835		3	

1982 ДЕКАБРЬ	18	Ø AR 4026	K	COSUTINO 170		(120)
H _{oc}	1504	1507	1534	S10 W21	2B	EFU
1-12 K3B	1501	1507	1520		X1,1	
15,4 PFU	1504	1506,6	1513		2,53	
8,8 FFII	1504	1504,6	1510		2,81	
ร กาม	1504	1504,6	1513	U2,7 [P5]	3,18	
2,6 FFU	1504	1594,8	1510		2,38	
1.4 ГГЦ	1504	1506.0	1511		2,91	
610 MCII	1504	1506.6	1517		3,38	
410 MTI	1452	1504,6	1520		3,82	
245 MCII	1503	1504.6	1510		2,62	
AC TUIT III	1504		1520		2	
AC THI IV	1506		1522		3	

1982 AEKABP	ь 19	9 AR 4022	K (COENTINO 170		(120)
Ha	1508	1632	1753	N19' W75	1B	*FKYZ
1-12 K3B	1541	1650	2200 ⁵		M9,0	
32-63 K9B	1537:57	1540:16	1540:47		1,9E+3	
	1542:51	1543:52	1545:22		-	
	1549:28	1648:45	1740:46)1,4E+5	
15,4. ГГЦ	1624	1626,0	1645		1,56	
		1636,3			1,61	
8,8 TTU	1622	1624,6	1645		1,71	
		1635,5			1,96	
ร กาน	1622	1624,6	1646		1,67	
		1635,5			2,00	
2,7 FFU	1621	1624,5	1644		1,78	
		1635.5		P3	2,11	
1,4 FFU	1621	1622,5	1644	P1,4	2,00	
		1635.5		-	1,95	
610 MFU	1634	1635,0	1635		•	
AC THE III	1519	·	1520		2	
	1601		1602			
	1634		1635		2 2 1 2	
AC THE I	1607		1630		1	
AC THI II	1625		1633		2	
BKB	(2045	N00(50)-W				

H _{oc}	0610	6726	0812	S17 E45	3B FIKL
	(0743	9759	0843	S14 E61	1B
1-12 K3B	0716	0752	0841		X2,2
50 K3B(BEH)	0741		0803		5,6E-3
150 K3B(BEH)	0741	4747 4	0803		8,1E-4
15 FFU	9736 9742	0747,0	9751 9898		3,11
9,1 FFU	9742 4770	0746,8		III E FRES	3,35
5 FT11	0738	0746,8	0823	U1,5 (P5)	3,45
1,5 FFU	0725 0740	0 745,6	1145		2,85
950 MFIL	0742	9746,6	0 818		3,49
650 MFU	0741	0748,0	0818		3,07
200 MFU	0742	0749,5	0830		3,01
100 NFU	0742	0749,5	0831		5,34
15,4 ГГЦ	0742	0753,0	0815		3,04
8,8 FFIL	0742	0753,0	9815	U1,4 P5-9	3,36
5 PPIL	0742	0 753,0	0815		3,36
1,4 FFU	0742	9753,3	0815		2,46
610 MFIL	0742	0753,0	0812		2,94
410 MFU	0742	0753,0	0812		2,26
113 MFU	0742	0751,0	0700		4,18
AC TUN III	9649		065 5		1 -
AC THE III,V	9742		0746		-
AC THE II,IV	0745		0817		-
AC THI IN	0759		0911		1
дс тип конт.	0759		9 847		3
I6-I					

1982 ДЕКАБРЬ	26		K	СОБЫТИЮ 171		(220)
 Н _о	0011	9913	0034	S12 E23	1N	F
1-12 K3B					C9.0	
15,4 ГГЦ	0012	0012,8	0019		2,61	
8,8 rru	0012	0012,8	0 02 0	U1,4(2,03)P9	3,00	
5 rru	0012	0013,4	0016		2,94	
2,7 ГГЦ	0012	0012,6	0017		2,28	
610 MCU	0012	0012,8	0016		2,73	
245 MCU	0011	0014,6	0016		3,26	
100 MFIL	0011	00 12,7	>0015		>4,00	
AC TUNIII,V	0011		0021		3	
AC THE II	001 t		0015		3	
дс тип конт.	0012		0015		2	
1983 ФЕВРАЛЬ	03	• AR 4077		COBUTINO 174		(220)
H ₀	9541	969B	9898	S17 W07	2B	EFKU2
1-12 K3B	9539	9611	9629		X4,1	
32-561 K3B	0 550:25	0603:37	0753:34		>1,5E+7	
>300 K3B	0 60 0		9629			
35 FFU	0 559	0607, 0	>0623		3,55	
9,4 PCU	0539	9605,3	0 811	U2 P9	3,89	
2 1111	0554	9693,5	0745		3,18	
650 MFIL	9558	0607,2	10942		3,67	
100 MFII	9692	0603.4	9714		5,20	
15,4 FFIL	0612	0612.8	>0628		3,52	
8,8 111	9612	0612,8	>0628	P5-8	3,64	
ร กาน	9612	0612.8	>0625		3.63	
1-4 FFU	0612	9613.0	>0628		2,90	
410 MFU	0612	9612,5	>0628		3,08	
1.4 171	9628	9649.5)0653		3,46	
610 MCH	9612	9653.8	>0705 >0705		4.00	
245 MFIL	9612	9639.3)0705		4.15	
AC TUR III	9 537		9692		2	
AC TUR IV	9558		0947		3	
AC THE II	9692		9628		3	
BKB	9642	360		4R	830*	

1983 MAPT 10		9 AR 4104	K	COENTINO 175		(000)
Hac	0820	0841	1020	S24 W55	1N	FKU
••	0820	0835	0900	S33 W63	1-	
1-12 K3B	9833	0923	1025		M1,1	
15,4 FFB	0840	0850,1	085 2		1,32	
9,1 TTU	0 823	0928,1	1240		1,48	
3 FT11	0834	0707,8)1230		1,36	
1,4 FFU	0832	0840,1	9 93 0		2,00	
950 MCU	0831	0 833,5	0 843		2,81	
100 MFU	0832	0903,0	0924		2,11	
AC THE III	0 839		08 55		2	
AC THE II	0850		0910		2	

1983 АПРЕЉ	15	O AR 4104	K	COENTUID 176	(0	1310)
H _~	0158	0201	0218	S12 W90	1B	AG
н. 1-12 кэв	0200	0209	0221		C3,9	
3,75 FFH	0210	0221,0	024 0		0,18	
200 MFII	9297	0208,0	9219		1,20	
100 MFH	0204	0209,3	0228		1,79	
AC THE III	9297		0209		1	
AC THE II	9297		9246		1	
	9224		0 227		3	

1983 MAN 12		• AR 4171	K	СОБЫТИЮ 177	(000)
Hox	0219	0 225	0316	'S30 E15	2B	FHJ
1-12 K3B	0250	0256	0315		M5,6	
32-63 K3B	0248:06	0248:17	0248:37		7,E+22	
32-564 K3B	0252:03	0255:02	0308:48		8,5E+5	
35 FF11	0253	9255,9	9258		2,33	
8,8 FFU	0251	0255	9315	U1 P9	3,68	
5 กาม	0252	0253.8	030 9		2,89	
2.8 111	0249	0253.8	0 313		2,99	
1 FFH	0252	9256,5	0315		2,52	
500 MCII	0252	0254.5	0312		4.11	
200 MUI	0252	0255.5	0300		4,36	
AC THE IV	0252		0402		3	
AC THE III.V	0253		9256		3	
AC THE II	0256	•	0337		3	

1983 MAR 15		AR 4173		COBNTHID 178		(110)
Ha	0839	0 845	0922	S12 W82	1B	ACEFHJ
1-12 K3B	9 837	0853	0 936		X2,3	
32-270 K3B	>0929:44	0929:44	>1013:21	,	>3,4E+	5
19,6 TTU	9839	0 846,6	1200		2,96	
9,1 ITH	0838	0 846,8	>1055	U2 P9	3,03	
2 ITH	984 9	0845 ,6	0 859		2,67	
1 1714	0 841	8,648	>0854		3,45	
410 HTU	9847	0 848,0	●853		1,59	
100 MTH	0848	0 849,9	0 933		5,08	
9.1 ITH	6838	0911,0	>1955		3,22	
3 1711	6839	0911,2	>1049	U0,4-0,8 [P3]	3,24	
810 MTH	0 843	0910,0	1112		2,10	
204 HFH	6 848	0910,4	1023		2,34	
100 HTH	- 6848	0909,0	0 933		4,90	
15,4 FFN	0853	0923,3	0 932		3,30	
9.1 FTN	0838	0919,1	>1055		3,35	
3.75 FTI	6859	0918,8	>0919	U0,4 P3,7	3,64	
410 HFI	9853	0918.8	6932		1,78	
245 HTU	6848	0923,5	0932		2,23	
AC THE IV	6843		1959		3	
AC TUR II	9848		0853		-	
AC THE III	6849		9851		2	

1983 MOH6 15		O AR 4201	К СОБЫТИЮ 179	(110)
H _{oc}				HET ZAHHMX
1-12 K3B	9397	0310	0314	B9,2
15,4 MI	0310	0310,5	0312	1,30
8,8 CCU	0310	0310,6	0312	1,36
3,75 ITU	0309	0310,9	0315	1,51
1 ITH	9 398	0310,2	0319	1,93
610 MFU	0309	0309,5	0 315	3,23
410 HCU	0309	0310,1	0312	4,00
245 HCU	0309	0310,3	0315	3,81
1 00 MFU	9319	0312,0	0316	3,68
AC THE III,V	6368		0311	3
	0330		0 348	2
AC THE II	0309		0341	3

1983 ИЮНЬ 19		D AR 4201	K COBLITHO 180	(000)
Ha				HET JAHHHX
1-12 K3B	0311	0314	0329	C1,8
500 MCU	0255	0255,3	0256	1,28
410 MTH	9255	0255,6	· 0 257	1,67
	0322	0322,3	0 323	1,68
245 MCU	0255	0256,1	0 258	1,26
AC THE II	0255		0 257	
	0303		0 323	

1984 ЯНВАРЬ	31	AR 4397AR 4400AR 4399	K	COENTINO 181		(000)
H _{oc}	0710	0 726	9754	N18 W54	1B	DEU
•	(0 705	9711	9896	NOB W48	SN	D
	(0711	9714	0757	N11 W24	SN	E
1-12 K3B	0710	0733	0 748		M1,7	
15.4 TTU	9721	0721,8	0 722		0.48	
9.4 [[]]	9710	0 721,8	>0736		1,98	
3.1 1114	6726	0721.2	0750	P3	2,91	
1,4 111	0721	0722,1	0736		1,61	
1 ITI	0710	0721,6	>0726		1,78	
610 MFIL	0721	0721.5	0722		1,60	
15 TTU	0721	9728,5	0 736		2,15	
8.8 771	0722	0728,3	●745		2,49	
ร กาม	9722	9728.1	9745	P5	2,62	
2,7 [[]	0722	0728,1	9744		2,52	
650 MTIL	0721	0725,9	-		1,62	
410 MCU	0723	0728,0	0741		2,79	
204 MTIL	0710	0728,1	0 756		2,58	
AC THI IV	0703		1053		2	
AC THE IS	(0749		1539		2	

1984 ЯНВАРЬ 3:	l	ø AR 4397	K	COBNITUM 181		(900)
H _{oc}	1256	1258	1303	N16 W60	18	F
1-12 K3B	1030	1302	1500		M1,2	
19.6 ITH	1256	1258,1	1304		1,58	
8,4 1711	1256	1258,1	1304		2,19	
5,2 FFII	1256	1258,1	1304		2,37	
3.1 ГГЦ	1256	1258.1	1304	U1,4 P3	2,43	
1.47 [[]]	1257	1258,3	1304		2,13	
610 MCII	1256	1257.1	>1259		2,30	
410 MCII	1257	1257.3	>13 0 2		3,04	
245 MCII	1257	1257,3	>1302		2,60	
AC THE IIIS	1229	·	1539		2	
AC THE III.V	1257		1259		2	
AC THIT KOHT.	1259		1534		1	

1984 ФЕВРАЉ	0 1	Ø AR 4403	K	COBUTUIO 181	_	(000)
H _{oc}	1928	1930	2010	N12 W22	SF	K
1-12 K3B	1914	2122	2359		M1,0	
15.4 FTU	1936	1953.0	2039		2,83	
8.8 111	1934	1953,1	2059		3,08	
2.8 [[]]	1935	1955.0	2110	U0,4 P3	3,31	
1.4 [[]]	1934	1953.1	2057		3,04	
400 MCII	1936	1952,8	2 008		1,62	
245 HCIL	1936	1951,3	2031		2,15	
AC THE KOHT.	1916		2115		1	

1984	ФЕВРАЉ	16	● AR 4466	K COSUTWO 182	([2]13)
Ha			ي که ۱۰۰ او باو دو باو به به به به به به به به باوانه	·	HET MAHINIX
1-12	кэв				HET BOTTRECKA
15.4	LLII	9859	9859.6	6966	1,26
5.2	LLII	9858	0859,8	0910	1,52
3.1	LLII	9858	0859.5	0 910	1,62
950	HCIL	0858	0 859,7	8984	2,14
410	HUI	9858	9858,3	090 5	2,98
113	HLIT	0 858	0901,2	9925	3,62
100	HLII	9858	8,000	0910	3,78
			0 912,2		
IC TH	IT IV	9858		9 929	3
AC TH	III W	€858		090 1	3
IC TH	n II	0 9 00		9 916	3

1984 ФЕВРАЉ	17	• AR 4421	K	COENTUD 183		(110)
H _{ox}	2226	2229	2402	N17 E81	1N	FKY
1-12 K3B	2224	2301	9097		X2,3	
15,4 FTU	2233	2235,3	2250		2,08	
8,8 FFU	2234	2235,3	2250	U0,6 P9	2,20	
2,7 FFU	2231	2236,1	2253		1,98	
610 HFU	2233	2235,3	2250		1,36	
410 HFU	2233	2234,6	2250		1,59	
17 FFU	2229	2244,3	2340		2,93	
9,4 FTU	2225	2244,1	2340	U0,4 P9	3,09	
3,75 ITIL	2223	2245,6	2341		2,93	
410 HTU	2243,8	2245,6	2253		1,34	
100 МГЦ	2241	2244,0	2321		2,74	
15,4 ITU	2250	2254,3	2311		2,79	
8,8 rru	2253	2254,3	2312		2,73	
5 FTU	2253	2256,1	2312	U0,4 P5,P15	2,80	
410 MFU	2253	2253,3	2257		1,64	
100 MFU	2241	2256.3	2321		2.91	
15,4 ITH	2310	2310,8	2328		2,51	
5 FFU	2250	2309,8	2310		2,76	
2,7 ГГЦ	2312	2312,1	2325	P3	2,79	
610 HTU	2310	2310.8	2350		1,59	
15,4 ITH	2312	2312,6	2325		1,45	
2.7 FTU	2221	2327.9	2359	P3	3,28	
		2331.0			2,99	
15,4 FTB	0054	0054.6	0122	P5.P15	3,04	
8.8 171	0054	0054.6	0122	. 57. 45	2,68	
5 rru	0054	9054,6	0122		3.00	
1,4 FTI	0054	9954,6	0058		2,52	
AC THE V	2241	200770	2250		3	
AC THI II	2248		2250		1.	
RC THE IV	225 0		9395		i	

1984 MAPT 14		• AR 4433	1	COENTHO 18	6	(110)
Ha	0315	0324	959 2	S11 W43	2B	CEFIKLSW
1-12 K3B	0314	0334	0410		M2,0	
8,8 FTU	0318	0 319,1	0329		1,32	
2 ГГЦ	9319	0321,4	0 35 0	P2	2,56	
1 PPU	9319	0317,7	-		2,06	
245 MFU	9 315	0316.8	0329		1,26	
100. MFU	9315	0316,8	9438		3,23	
15,4 FFU	9 318	0327,0	0339		2,23	
8,8 ITU	0 318	0327.0	0339		2,48	
5 กาน	9318	0327.0	9339		2.43	
3,75 FTL	9316	0325.2	9346	P3.8	2,56	
1,4 FFU	9 318	0327.0	9339	•	2.20	
610 HFU	0 318	9329,5	0405		2,23	
245 MTU	9318	0327,0	0339		2.18	
AC THIT V	0315	·	0325		2	
AC THE IA	9325		0454		2	
AC THE II	9328		0339		2	

1984 ATTPEX	24	● AR 4474	ĸ	COBMTWO 187		(340)
Hoc	2356	0001	0202	S11 E45	3B	EFHIKU 0 7
1-12 K3B	2354	0005	0106		X13,6	•
24-400 K3B	2352:13	0001:07	>0333:40		>1,5E	+8
>300 K3B	2359		0021			
4-7 M3B					>7 00	
BB	2359		0004			
80 TTU	2358	-	02 00		>4,16	
9,4 FFII	2356	0001,1	0052		4,31	
3,75 ГГЦ	2356	9000,5	995 9		4,12	
2,7 FTH	2357	.0001,1	0004	U1 (P3)	4,83	
1 FFU	2359	0001.0	0039		4,11	
500 HFU	2359	0000,4	9297		4,89	
100 HFIL	0001	0001.0	0150		>4.00	
9,4 CTU	0107	0134,9	033 0		3,08	
3,75 rru	0100	0141.9	0500		3,34	
1 FTU	9638	0137.9	0500	P1	4,25	
500 MFU	2359	0149.0	9297		3,13	
AC TAU III	2353	•	2354		1	
	0029		9939		2	
	0043		0047		1	
AC THI IV	9999		0230		٠,3	

1984 AIIPEJI 2	4	Ø AR 4474	K	COBUTUM 187		(340)
H _{ox}	0259	0 352	9511	S68 E56	2N	BEFIJU
1-12 K3B	0339	0402	0429·		X1,0	
80 LLI	0341	0348,3	0351		1,74	
35 MU	0337	0348	0354		2,73	
9,4 ITU	0332	0348,4	0404	P9	2,88	
3,75 FFU	0334	0 349,2	0415		2,33	
2 FFU	9337	0349,2	0415		2,16	
1 ITU	0 337	0348,2	0415		2,08	
500 HFU	0 336	0347,9	0422		2,89	
100 MFU	0349	0350,0	0352		2,68	
AC TUN III	0300		0301		1	
	0314		0330		1	
	0339		9409		2	
AC THIT KOHT:	0407		6947		2	

1984	МАЙ	0 5	O AR 4476	K	COENTINO 188	(000)
H		1109	1124	1140	S13 W68	1B DEF
1-12	КЭВ	1116	1207	1255		M7,1
24-400	кэв	1148:24	1153:34	1218:46		9,9E+5
50	ГГЦ	1131	1145,0	>1401		2,23
11,8	ГГЦ	1131	1142,1	>1401	P12	2,65
5	LLI	1134	1142,1	1149		2,64
2,8	LLI	1129	1142,0	1219		2,18
808	ИГЦ	1139	1142,5	1152		2,32
204	MUII	1141	1143,0	1146		1,08
15,4	LLI	1136	1156,6	1218	P5; P15	2,56
5	LLT	1135	1156.6	1218		2,54

1,4 ГГЦ 245 МГЦ	1135	1156,6 1158,8	-		1,20 1,23
8,4 FFU	1131	1227,8	>1401		2,80
3,1 171	1131	1224,9	>1401	P3	3,12
245 MCU	1221	1223,3	1235		1,26
15,4 FFU	1235	1235,8	1247		2,30
2,7 FFU	1235	1235,8	1247	P3	3,23
410 HFU	1235	1235,8	1247		1,72
AC THE II	1149		1154		2
AC THE III	1210		1211		1
	1221		1238		1

1984	0 RAM	5	D AR 4474	K	COBUTUD 188	(000)
Hoc			n plak dilip diki etal piny, nyi n upis pips unp apa apa ana		S13*W90*	НЕТ ДАННЫХ
1-12	КЭВ	1808	1827	1849		M7,5
24-400	кэв	1808:24	1814:43	>1938:08		> 6,61E+06
>300	кэв	1813		1824		
15,4	LLII	1811	1816,3	1827		2,51
			1821,6		U0,6/15	3,00
8,8	rru .	1810	1812,6	1827	U0,4 P9	2,70
•	- · · · ·		1821,6			2,89
2.8	LLI	1810	1814.5	1825		2,28
	MTIL	1813	1815,8	1824		1,83
			1821,6			1,83
419	мгц	1816	1816,6	1820		1,57
245	нгц	1804	1808,8	1824		3,18
			1814,6			2,32
			1821,8			2,83
AC TI	UII V	1812	•	1817		1
AC TI	VI IN	1813		1853		2
AC T	II IIN	1821		1836		2

* КООРДИНАТЫ АКТИВНОЙ ОБЛАСТИ

1984 MAN 20		O AR 4492	K	COEMTIND 18	9	(010)
H _{oc.}	2218	2234	2359	S07 E53	2B	EFIJKTV2
1-12 K3B	2224	2237	2308		X10,1	
24-47 K3B	>2253:11	2253:21	2326:0 3		>5,3E+4	
80 LLIT	2234	2235,2	2318		4,19	
15,4 ГГЦ	2233	2234,6	>2230		4,30	
8,8 ITU	2233	2234,8	2255	U1 [P9]	4,46	
2,7 FFIL	2233	2235,1	>2257		4,15	
1 กาน	2234	2236,8	2324		3,38	
610 NFU	2234	2236,1	2310		4,76	
410 MTU	2234	2235,8	2255		4,72	
245 MCII	2234	2236,6	>2247		3,93	
100 MFIL	2235	2239.8	2303		3,53	
AC THI IV	2239		2246		2	
AC THI KOHT.	2246		0430		1	

1984 MAN 21		O AR 4492 AR 4481* AR 4494	ĸ	COBNTHO 1	89	(010)
Hoc	(0215	0217	0220	509 E5	i2 SN	D
**	0237	0247	0258	N09 W9	- 0	
	0258	0309	0322	S10 E6	4 SN	F
1-12 K3B	0218	0326	0357		M5	,7
24-47 K3B	0216:12	0216:40	0216:49		-	•
24-158 K3B	0219:19 0219	0219:43	0237:41 0221		>1,	9E+6
17 FFU	0219	0219,9	0223		1,	40
8,8 rru	0219	0220,3	9224		1,	94
2,7 FFU	0219	0220,3	0232		2,	94
1,4 FFU	0219	0219,6	0237	P1		08
1	0219	0219,9.	0254		2,	76
610 MCU	0219	0219,3	0233		3,	8 8
410 MFU	0219	0129,3	0222		2,	57
200 МГЦ	0219	0219,3	0223		3,	57
100 HFU	0219	0217,8	0223		3,	11
AC THII V	0219		0222		i	
AC THE IV	Ø255		0327		1	

* АКТИВНАЯ ОБЛАСТЬ 2 СУТ. ЗА М-ЛИМБОМ

1984 MAP 22		● AR 4492	Κ '	COBNTUD 190	(010)
Hoc	(1501	>1502	1502	S09 E26	28
1-12 K3B	1450	1503	1521		M6,3
24-400 K3B	1452:07	1457:01	>1512:11)1,7E+6
>300 K3B	1457		1501		
35 FFU	1451	1459,9	1551		2,27
8,4 ITU	1451	1459,9	1551	•	3,02
5,2 ITU	1451	1500,0	1551	U0,6 [P5-9]	>3,00
3,1 ITU	1451	1500,0	1551		>2,91
610 HFU	1453	1456,0	1504		1,94
234 MCU	1452	1455,4	155 0		3,08
113 MFU	1451	1454,3	1546		3,15
AC THE III,V	1450		1504		3
AC THU III	1505		1536		3

	1984 MAN 31		□ AR 4492	К СОБЫТИЮ 191	(010)
	Н.,				RECEITANT THE
	Н _{ос} , 1−12 КЭВ	1129	1142	1156	M1,7
	24-87 K3B	1131:51	1137:53	>1142:1 0	>2,9E+4
	8,8 FFU	1137	1141,0	1146	1,86
	5 กาน	1136	1140,6	1145	1,90
	2,8 ГГЦ	1136	1140,5	1147	1,41
	100 MU	1125	1141,4	1147	2,60
t	AC TUN III	1132		1140	1
	AC THE II	1141		1208	3
	17-1				

1985 AHBAPI	21	• AR 4617	к (COFUTUR 192		(010)
Ha	2308	2320 0003	0149	S10 W40	1N	FKUVZ
1-12 K3B	2352	0004	0043		X4,7	
4-405 K3B	2352:28	0001:32	0138:10		>4,8E+7	7
>300 K3B	2358		0002		-	
4-7 M38					5,9	
17 FFU	2353	2359,9	0045		3,53	
15,4 FFU	2353	2359,8	0058	U1,4 P15	3,60	
8,8 TTU	2353	0000,1	0058		3,40	
2,7 CCU	2358	2359,8	0058		3,04	
1,4 ГГЦ	2358	6,000,3	0022		2,90	
500 MFIL	2359	0000,0	0213		5,00	
100 MFU	0000,0	0002,0	0230		>4,00	
2 111	2357	0035,8	0217		2,62	
		0052,8			3,31	
1.4 CCU	0011	0029.8	00 58		3,58	
		0052,3		P1,4	4,41	
610 MFH	2359	0032,6	0124		4,38	
		0046,3			2,80	
410 MCU	00 11	0031,6	0122		3,72	
		0047,6			3,40	
245 MFU	0011	0032,3	0112		3,36	
		0048,3			3,04	
AC THII IS	2312		0047		1	
AC THE IV	0000		0031		3	
AC THE III	0021		0022		3 1	

1985	AllPEJIb	24	● AR 4647	K	COENTINO 193	(220)
Hoc		(0850	9902	1050	N05 E24	28	EHZ
1-12	Kab	0845	0935	1002		X1.9	
27-406		0926139	0929:35			7,8E+6	
>300		0928		6938			
	LLII	0921	0928.0	>1041		3,70	
15.4		0921	0926,0.	0941		4.11	
,			0933.1				
8.8	LLII	0917	0929.0	1013	P9	4,15	
			0934,6		P9	5.08	
2.7	LLII	0917	0931,0	1013		3,67	
-,.			0933,1			3,48	
1.4	LLII	0917	0926.0	1013		3,86	
-, .			0935.6			3,97	
410	MCII	0921,3	0924.8	0941		3,11	
•		*****	0936.1	•		2,23	
200	MCIL	0924	0925,0	1029		4,24	
100		0925	0926.2	1026		4,32	
		0.20	0930.3			4.32	
RC TI	n III	0917	3.00,0	0926			
AC TV		0 922		1459		3 3 3	
AC TV		0923		0927		ž	

1985 ИЮЛЬ 0 2			к	СОБЫТИЮ 194	(000)
Hai	2056	2116	2310	S14 E57	2B EF
1-12 K3B	2103	2128	2150		M4,5
25-408 K3B	2113:18	2120:30	2144:26		7,7E+5
>300 K3B	2119		2121		
15,4 ГГЦ	2116	2120,5	2138		3,15
9.4 [[]]	2115	2121,7	2150	P9	3,18
5 เกม	2116	2122,1	2128		2,84
2.7 ГГЦ	2117	2120,0	2129		2,32
1 LLII	2114	2120,5	2217		2,44
410 MFU	2120	2120,5	2121		1,71
100 MCII	: 2122	2122,9	2143		2,48
AC THE II	2116		2123		3
AC THI IV	2116		2145		2
дс тип конт.	2145		2209		1

1985 ИЮЛЬ 09		• AR 4671	κ	СОБЫТИЮ 195	j 	(120)
H _{ox}	0133	0140	0344	S13 W25	1N	DEFIKTUZ
1-12 K3B	0126	0204	0227		M2,9	
80 LLII	0146	0159,2	0240		1,26	
15.4 FFU	0142	0201,8	-		2,26	
8.8 rru	0151	0155,0	0213		2,40	
5 กาน	0138	0156,8	0214		2,46	
3.75 FFII	0133	0157,0	0248		2,48	
2,7 [[]	0122	0154,6	0207	P2,7	2,56	
2 ГГЦ	0128	0157,9	0222		2,45	
1 111	0127	0150,8	0257		2,44	
410 MFU	0147	0157,1			2,87	
200 MCU	0148	0156,6	0428		2,54	
100 MFU	0148	0156,0	0459		3,32	
AC THE III	0129		0130		1	
•	0154		0155			
AC THE II	0156		0213		3	
AC THI IV	0204		0430		3	

1985 ИЮЖь 17		■ AR 4671	к событию 196	(000)
Hac				НЕТ ДАННЫХ
1-12 K3B				HET BOTTHECKA
i FTII	0324	0335,0	0400	0,78
500 NILI	0325	0334.9	0355	1,00
200 HTU	9325	9326	0351	2.70
100 MCU	9325	0339.3	9353	2.40
AC THI II	0333	000.,-	0348	2
AC THII KOHT	0337		0430	1

1986	ФЕВРАЛЬ	0 3	● AR4711	K	COENTUR 198		(000)
Ha			2040	2252	S09 E27	1B	FKSU
1-12 K	(3B	2037 2034	2049	2115		H2,3	
25-154	K3B	2036:47	2037:14	2038:19		1,2E+5	
25-90	КЗВ	(2115:10	2115:25	2212:47)2,9E+4	
15,4 Г		2037	2037,3 2046,8 2042,6	2059	U0,6/15	2,65	
			2046.8	-	1.5/15	3,04	
8,8 r	TU	2037	2042.6	***		2,77	
5 r		2037	2037,3			1,86	
2.8 F	-	2037	2042,5	2203		2,36	
610 M	-	2038	2038.3	_		1,79	
410 M	•	2037	2037,1	_		3,34	
245 M		2037	2037,8	2103		3,18	
AC TUT		2036	_	2044		3	
AC THE		2100	-	2125		_	
1984	♦EBPA// b	0 4	• AR 4711		COENTHID 199		(000)
Hoc		9732	9740	 0828	S 64 E21		BEFUI
1-12 K	(AR	0732	0741	0805	001 444	X3,0	
25-330 K		0733:09	9737:14	9738:26		>5E+06	
)300 K		9735	0/0/11	0738		, , , , ,	
80 1		9734	A777 2	074B		3,18	
35 r		0734	0737,2 0737,2 0737,1	0748		3,84	
15,4 F		0734	0/3/,2 0777 1	0806	U1 P15	4,28	
8,8		9734 9734	0737,1	0 802	01 113	3.83	
3 7		9734	9737,B	0843		2,95	
	-			Ø827		2,72	
950 M		0734	0737,5	9739		4,15	
245 F		0735	0737,1	0/37		4,59	
100 'r		0734	0736.2	0812			
9,1 [0739,1	_		3,52 2,73	
2,95 F			0739,1	- 0740		3,04	
610 H		9735	6738,3	*		3,85	
500 M		9734	9739,9	0804		2,93	
410 M		9735	0739,9	0 740		3,14	
950 M		-	9752,4	_		3,34	
650 M			0759,2			3,04	
204 M		0740	0752,2	0 815			
100 H		-	0 75 0 ,7			3,90	
	IIIN	9734		1604		2	
	I IV			0741			
	ФЕВРАЉ		● AR 4713		COENTINO 199		(000)
Hox	/OB	1025	1028	1106	SØ3 E66	2N	BCDE.
1-12 K		1018	1029	1054		M6,4	0.4
25-411 K		1022:48	1026:04	1046:37)1,2E+	V O
>300 K		1023		1028		7 40	
50 F		1023	1026,1	1043		3,18	
35 F		1023	1026,1	1043	UA (E DO 40	3,00	
	7 1 L	1023	1026,1		U0,65 P8-12		
11,8				1048		3,19	
8,4 [1023	1027,0			~ ~~	
8,4 F	тц	1020	1026,0	1040		2,35	
8,4 [тц	1020 1023	1 0 26, 0 1 0 27,7	1040 1042		1,95	
8,4 F	тц TЦ	1020	1926,9 1927,7 1926,9	1040 1042 1027		1,95 2,72	
8,4 F 3 F 950 P	TTU HTU HTU	1020 1023	1926,9 1927,7 1 9 26,9 1926,8	1040 1042 1027 1027		1,95 2,72 3,53	
8,4 F 3 F 950 P 234 P	TTU HTU HTU HTU	1 020 1 0 23 1 0 25	1926,9 1927,7 1926,9	1040 1042 1027		1,95 2,72	

1986 ФЕВРАЛЬ	05	Ø AR 4711	K	COENTINO 199		(000)
Ha	(1234	1247	1335	S06 E04	2N	HJKUM
1-12 K3B	1232	1255	1321		M3.0	
25-69 K3B 1	1234:08	1235:43	1239:10)3, 2E+	4
50 FFIL	1240	1244,0	1310		2,30	
8,8 7711	1234	1244,0	1339	U0,8 P9	3,41	
2,7 CCU	1234	1247,0	1314		3,08	
810 MCU	1233	1245,0	1303		2,04	
410 MCU	1246	1246,3	1255		2,74	
113 MCU	1233	1242,0	-		3,10	
30 MCH	1234	1254,0	1306		3,81	
AC THE KOHT.	1215		2138		1	
AC THE IV	1234		1318		2	

1986 Φ ЕВРА	NA 06	● AR 4711	K	COENTINO 200		(220)
н _{ас}	Ø61B	0622	9714	S07 W02	2B	WULTH
1-12 K3B	0618	9625	0707		۲X1,7	
25-411 K3B	9617:12	0622:05	0648:08		1,2E+	97
)300 K3B	0620		9627			
80 LLM	0618	0622,2	0627		3,30	
15.4 FFIL	0618	0622,1	0709	U2 P15	4,41	
3,75 ГГЦ	0615	0622,0	9649		3,35	
2 111	9617	0621,8	9647		3,01	
500 MCU	9618	0622,0	0711		3,74	
200 MI'II	0619	0622,0	0712		4,32	
100 MFU	0619	0621,4	0 75 0		4,58	
AC THI II	9619		9641		3	
AC THIS IV	9624		1051		2	

1986	ФЕВРАЛ	9 7	● AR 4711	ĸ	COENTIND 201		(220)
Hox		1011	1024	1242	S11 W21	28	EFHIOUV
1-12	КЭВ	0947	1034	1126		M5,2	
25-176	КЭВ	1042:08	1042:27)1105:5 1)8,6E+	3
35	LLIT	1013	1024,3	1128		2,89	
15	LLI	1013	1024,2	1058		3,20	
	•		1027,4			3,23	
8.4	TT II	1013	1024,1	1128		3,39	
5,2	rru	1013	1023,5	1128	U0,9 [P5-8]	3,43	
950	HLII	1011	1017,7	1956		2,94	
234	MUII	1002	1017.5	1110		4,51	
100	MLII	1013	1014.3	1051		3,78	
			1026,5			3,30	
30	MUII	1012	1019.0	1053		4,45	
AC T		1011		1027		3	
**	III III	1012		1014		2	
AC T		1012		1105		3	

1986	ФЕВРАЛЬ	10	⊕ AR 4713	K	COENTINO 202	(60[0])	
H _≪ 1-12	кэв	2025	2055	>2100	S01 W32	SB FI C9,5	KS
25-224	K3B	2018:30	2022:00	2038:14		1,3E+05	
15,4	ГГЦ	2021	2022,6	2042		2,68	
8,8	LLIT	2020	2022,6	-		2,90	
5	LLIT	2020	2023,1	-		2,86	
2,8	ГГЦ	201B	2023,5	2103	[P2,8]	2,93	
610	ГГЦ	2023	2024,1	2025		2,38	
245	МГЦ	2020	2024,3	2048		3,04	
AC TH	N IV	2021		0411		2	
AC TH	N II	2024		2043		2	

1986 ● EBPA #	ь 14	• AR 4713	K	COENTINO 203		(220)
	0909	0 922	1010	N00 W78	1N	AEFHOR
1-12 K3B	0902	0929	1028		M6,4	
25-302 K3B	0 707:48	0715:40	0949:33		1,8E+0	6
50 FF4	9996	0921,0	1106		2,46	
19,6 FFIL	0906	0921,0	1106		3,00	
8.4 ITU	9906	0921,0	1106	[P8,4]	3,56	
3 กาน	0905	0921.8	1025		3,14	
200 MCII	0905	0911.2	0912		3,53	
100 MTH	8987	0917.6	0953		4,16	
30 HFU	0914	6920,5	1052		3,94	
AC THE III	6969	•	0929		1	
AC THE IV	0912		1947		3	
AC THE II	9998		0926		3	

1986 MAPT 06		● AR 4717	K	COBNTHID 205	(E13)	90)
H _{ot} 1-12 K3B	1637	1702	1757	N02 E01	1F C4,6	Fl
2,8 114	155 0	1705,0	2140		1,33	
•	1659	1703,0	1704		1,00	
1,4 FTU	1657	1657,8	1658		1,79	
930 HFII	1621	1702,0	>1703		>3,30	
610 HTU	1649	1706,8	1726		4,23	
410 HFIL	1701	1717,6	1745		3,34	
245 HCL	1707	1708	1730		1,88	
AC THE V	1640		1656		1	

1986	МАЙ	04	.D AR 4727	K	СОБЫТИЮ	206	(110)
На.					N96*	W90*	НЕТ ДАННЫХ
1-12	кэв 🗀	0932	1007	1039.			M1,2
25-69	кэв	>1004:54	1008:53	1014:53			>6,1E+3
9,5	CLIT	0951	1012,5	1030			1,15
3,1	LLII.	0948	0954,2	1039			1,20
	-		1011.1				1,18
1.4	LLII	0948	0954.0	1039			1,15
536	HUIL	0945	0954.5	-			1,36
	•		1023.3				1,30
204	HLT	0946	6956,6	1030			1,23
30	MLT	0948	0956,5	1034			4,54
AC TH	n II	0949		1004			

^{*} КООРДИНАТЫ АКТИВНОЙ ОБЛАСТИ

Часть З

PART 3

	£
HR 16577	MI690-28 SI2 IO,8 янв. I980 MW2II93 AR2232 СДІО
10.01.045	59 L176
2 оборот	Возвращение НРІ6498; на видимую полусферу вышла в виде одиночной пори; быстрое развитие с удвоением площади с 5.01. Максимум развития после 9.01; D-конфигурация – 12.01 в центральной части. Всего вспышек 78 $(2_2+I_{10}+S_{65}; X_1+M_5+C)$.
Щ м 12.01	Ca -/- пятна 890/418/9 DKI - Ca -/- пятна 920/478/27 EKI -
HR 16604	MI690-52 S17 22,6 янв. I980 MW2I2I6 AR2247 СД39,35
25.01.190	3; 3I.0I, 2,5 ⁰ L27 ва W-лимбом
2 оборот	Возвращение HRI654I в виде одиночного пятна s -полярности. 2I.0I образовалась протонная группа пятен, c максимумом развития 26.0I. b -конфигурация 25.0I. Всего вспышек 83 (2_1 + 1_6 + 3_76 ; M_4 + G_17).
TIIM	Са 2600/3,5 пятна 286/72/32 _ В 93/93/I
25.0I	Ca 3500/4,0 923/545/32 DKI D 88/88/I
26.01	Ca -/- 1059/754/15 _ B 85/85/I
IR 16627	MI69I-I8 NI5 2,8 фев. 1980 мw21227,28 AR2262.67
08.02.090	5 L 233 CU50,5I
6 и З оборот	Возвращение части НВ16566 и 16572; долготный комплекс АО; после 5.02 постепенное увеличение площади (s 100 м.д.п./сут) западной группы пятен с одновременной деградацией восточной; р-конфигурация в западном компоненте 3-5.02. Всего вспышек 61 (22+15+354; X _T +M ₂ +C ₇)
TUM.	Са 4900/3,5 пятна 405/251/18 FKI BC _I 252/123/2I
08.02	Ca 300/2,5 пятна 515/320/17 НКХ -

HR 16740	MI693-33 N 26 I,6 апр. 1980 MW 21344 AR 2363 СДІ87
04.04.1454;	; 03.04.0627 LI78
кваон	Образовалась на невидимой полусфере; из-за Е-лимба вышла в максимуме развития; постепенное уменьшение площади после 2.04; D-конфигурация 29-31.03. Всего вспышек 89 ($2_2+I_4+S_{83}$; M_3+C_{24}).
ЩМ	Ca 2700/3,5 пятна 810/288/28 EKI BG
03.04	Ca 2200/3,0 пятна 444/222/I9 DKI BG
04.04	Ca -/- IIATHA 566/204/20 DKI BG
HR 16886	MI695 N I4 I, 8 июнь I980 MW 2I502 AR 2495 СД288
07.06.03II	L 90
Новая	Образовалась на видимой полусфере 4.06 на $\$50$; бистрое развитие и уход за $\$$ -лимо в максимуме развития. D -конфигурация с 5.06. Всего вспышек 29 (I_4 + S_{25} ; M_3 + C_5).
07.06	Ca 200/3,0 пятна 505/310/4 DAO в
HR 16898	MI696-I6 N I8 I4,8 июнь I980 мw 21517 ar 2502 СД297
51.06.0151	ь 278
Новая	Образовалась на невидимой полуофере; I2.07 в непосред ственной близости с юга образовалась сD 30I, которая существовала до I8.07; за W-лимб ушла одиночной; ман симум развития с I7.06. D-конфигурация I2-I3.06. Всего вспышек 79 (I ₆ + S ₇₃ ; C ₈).
ЩМ	Са 4700/4,0 пятна 528/298/20
17.06	Са 3900/4,0 пятна 720/444/33 - D
I9.06	Са 2800/4,0 пятна 522/392/14 - D

	4.3U
IR 16918	MI696-33 SI4 22,0 ююнь 1980 MW 2I53I,32,39,4I;
	AR 2517,19 СДЗОБ
21.06.000	3 LI84
2 оборот	Возвращение северной части комплекса АО HRI6862,63,64; $20-22.06$ незначительное увеличение площади пятен, посл которого быстрый распад — за W-лимб ушла в виде одиночной поры; D-конфигурация $2I-22.06$. Всего вспышек $65 (2_2+1_9+8_{54}; M_I+C_3)$.
IIII)M	Ca 5500/4,0 пятна 289/IQ4/22 CAO D
HR 16923	MI696-35 S24 23,3 MDHb I980 MW2I533,36; AR2522;
	СД308.307,315
29.06.103	5 L167
2 оборот	Возвращение части 16864 ; компонент комплекса $A0$; сыстр развитие ведомой части вблизи старого лидирующего пяти с 19.06 ; максимум развития $24-25.06$, затем медленное уменьшение площади. D -конфигурация 26.06 . Всего вспишек 139 ($1_{14}+3_{125}$; M_7+C_{14}).
Ш м 29.06	Ca 5700/4,0 пятна 591/397/47 FKI G Ca -/- пятна 197/106/4
HR 16955	MI696-63 N28 3,6 MMOJIS 1980 MW 21567 AR 2550 CJJ329
05.07 22	37 L28
навон	Образовалась на видимой полусфере 2.07 на E20. Быстрое развитие в первые сутки до $_{\rm p}^{\rm s}$ 200 м.д.п. сменилось равномерным нарастанием площади пятен ($_{\rm p}^{\rm s}$ 100 м.д.п./сут); максимум развития с 8.07. $_{\rm p}^{\rm s}$ -конфигурация 4-8.07. Всего вспышек 55 ($_{\rm 18}$ + $_{\rm 8}$ - $_{\rm 17}$; $_{\rm 12}^{\rm s}$).
ПЦМ 05.07 08.07	Ca 1000/3,5 пятна 206/48/16 DS I BG Ca 1100/4,0 пятна 392/256/19 FK I D Ca -/- пятна 787/252/13 EK I D

	- Tat
HRI6978	MI697-I9 SI2 I7,2 июль I980 мw2I590 AR2562 СД342
17.07.05	36 L207
Новая	Образовалась на невидимой полусфере. Максимум развития у E -лимба; после $I5.07$ постепенный распад и упрощение группы пятен. D -конфигурация $I2,I3.07$. Всего вспышек $I23$ $(2_3+I_{15}+S_{105}; X_2+M_{12}+C_{25})$.
ЩМ	Ca 3000/4,0 пятна 913/509/42 EHI BP
HRI7I88	MI700-50 si0 i3,3 окт. 1980 мw21811 AR2725 СД494,495
14.10.05	4I L12I
,	Возвращение нк17120,17127; комплекс АО из 2 слизко расположенных по широте групп пятен; на видимий диск комплекс вышел вполне сформировавшимся со сложной магнитной структурой. D -конфигурация в северной ведомой части 8-14,16, 18.10, после 16.10 систрый распад. Всего вспышек 150 ($3_1+2_2+1_{14}+\ ^{S}_{132};\ ^{M}_5+^{C}_{21}$).
Ш <u>І</u> М 14.10	Са 7900/4,0 пятна 82I/332/63 EKC D Са 7800/4,0 пятна 590/2I/62 EKI D
HRI7204	MI700-60 NI5 18,9 ORT. 1980 MW 21827,29; AR2741 CJ506
15.10.04	50 1 50
2 оборот	Возвращение нк17145. Практически беспятенная АО. Поры отмечены 13-15; 17-19, 20, 10; всего вспымек 3 $(3_{I}+I_{I}+s_{I};$

16/5/5

14/8/2

BXO

AXX

AP

AP

пятна

пятна

M_I). Ca 2500/3,0

Ca 3000/3,5

ЩМ

I5.I0

IR I 7244	MI70I-34 N	11 6,6 F	0861. фоко	MW21862	AR 2776	СД54І
11.11,090	00	L]	67			
2 оборот	Возвращение тия; максиму дей после Об вспышек 104	и развиті В.II; D-1	ия 04.II; за конфигураци	аметное у я все про	меньшени хождение	е площа-
ШМ	Ca 6800/4,0	пятна	I476/699/	70 EKC	D	
4.II	Ca 6800/4,0	пятна	1378/879/	55 DKI '	D	
II.II	Ca -/-	пятна	1058/598/	24 EKC	D	
		ь на мест	e HR17182	волизи Е-		лидиру-
Новая	Образовалас:		ом; конфигу	рация не	менялась	BCe
Кваон	ищим наибол прохождение	нтки мишь ФнояС	игурация 5.	II. Boero	вспышен	
кваоН	ищим наибол	нтки мишь ФнояС	игурация 5.	II. Boero	вспышен	
	ищим наибол прохождение	ьшим пятно • Dконф 2 ^{+С} 3 ⁾ • Вс	игурация 5. е большие в	II. Boero	вспышен	
новея ШШ П.П.	ищим наибол прохождение (2 ₂ + S ₄₈ ; M Са 1500/3,5	. рконф 2 ^{+С} 3 ⁾ . Вс пятна	игурация 5. е большие в	II. Boerd chamka IO 6 DSI	вспышен -II.II.	

I4.II,0639,	0800,1539,	98	2346; 15.1	1.1519	€
I и З	Возврещение на развитой; мако самых больших тивности. D-и 218 (25+I41+s	имум разы групп пятс сонфигураці	ития II-I2.II; эн 2I цикла со ия 7-I6.II. Вс	одна лнечно	из й ак-
FILIM	Ca -/-	пятна	I848/83I/56	FKC	D
I2.II	Ca - /-	пятна	I934/88I/54	FKC	D
I4.II	Ca 5600/4.0	пятна	1999/797/48	FKC	D

	- 140 -
HR 1728I MI7	02-I0 NI2 22,5 нояб. I980 MW 21893 AR 2793 СД556
23.11,1751	L 315
2 и 3 обороты	Возвращение ведомой части н \hat{r} 17219 и 17222; восточная часть долготного комплекса AO; бистрое затухание обеих групп пятен после 25.II. D -конфигурация 17-20.II. Всего вспышек 83 (I_{12} + I_{13}).
ЩМ	Са 2900/3,5 пятна 377/104/16 вы ву
23.11	Ca 2400/3,5 HATHA 302/II4/I7 BAI BP
HR 17481 MI7	05-39 s16 28,8 фев. 1981 mw - AR 2954 СД89
7.03, 0613	T 100
ШІМ	тем — лидирующее, ведомое пятно распадается и к 06.03 — исчезает; максимальное развитие $27-28.02$. D — конфигурация $26-28.02$ и $02-03.03$. Всего вспишек $60 (2_3+1_3+s_{54}; X_1+M_8+C_6)$. Са $-/-$ пятна $1014/442/62$ — D
HR 17528 MI7	06-26 N 08 20,8 март 1981 мw 22130 ar 2984 СДП9
25.03.2039	L 207
3 и 4 обороты ПЦМ	Возвращение части нк 17469; на видимый диск вышла в виде небольшой группы сложной структуры; новый имплульс развития с 20.03 с быстрым ростом площади пятен, максимум развития у W-лимба; D-конфигурация $15-17,23-24.03$. Всего вспышек $108 (2_2+I_{II}+S_{95}; X_I+M_6+C_{24})$. Са $-/-$ пятна $345/2I2/17$ CSI $-$
25.03	Са 1500/3,5 пятна 824/250/14 DKI D

HR 17535	MI706-34 N14 24,9 Mapt 1981 MW22I36 AR2993 CAI26
30,03,001	7 LI45
кваоН	Образовалась на невидимой полусфере Солнца; из-за Е-лим- ба вышла вполне сформировавшейся биполярной группой; усложнение структури за счет появления новых пор у лиди- рукщего пятна; D-конфигурация 23-25.03; максимум разви- тия 24-27.03. Всего вспышек I28 (I ₁₀ + S ₁₁₈ ; M ₃ +C ₂₄).
ПЦМ 30.03	Ca 2400/3,5 пятна 1020/716/30 FKI ву Ca 500/3,0 пятна 591/460/4 вко в
HR 17539	MI706-4I S42 27,7 март 1981 MW22I46 AR2999 СДІЗЗ
01.04,010	02; 2. 04,0905; 04.04, 0502 L 99
Новая	Образовалась на невидимой полусфере; из-за Е-лимба внила в виде компактной группы пор; 25.03 поры слились в два пятна одинаковой полярности; с 26.03 быстрое развитие и усложнение структуры, которые к 28.03 привели к образова нию сложного пятна D-конфигурации (28.03-4.04). Самая высокоширотная вспышечная группа пятен 2I цикла СА. Всег вспышек 77 (3 ₁ +2 ₂ +I ₁₀ + S ₆₄ ; X ₂ +M ₅ +C ₁₃).
IILIM	Ca 800/3,5 matha I30/65/I2 DAO D
I.04	Ca 900/4,0 пятна 717/338/17 DKC D
2.04	Ca -/- пятна 371/143/16 DKI D
3.04	Ca -/- пятна 365/I90/II dai by
4.04	Ca -/- пятна II9/79/2
HR 17568	MI707-09 NO8 8,4 anp. 1981 MW22172 AR3025 CAI53
10.04,163	2 L3I5
2 оборот	Возвращение на 17512; до 9.04 одиночное лидирующее пятно с несколькими ведомыми порами; бистрое развитие с 8 на 9.04; после вспышки 10.04 бистрый распад. Всего вспышек 32 $(2_T+I_5+S_{26}; X_T+M_5+C_T)$.
Ш <u>м</u> 10.04	Ca I300/3,5 пятна I32/I32/I сsо ву Ca 3000/3,5 пятна 267/I22/23 DSI -

HR 17576	MI707-25 NI4 I4,4 anp. I981 MW 22I95 AR 3035 СДІ63
10.04,105	9 L 233
Новая	Образовалась на невидимой полусфере; вишла из-за Е-лим ба в полном развитии; общая конфигурация и площадь пя-тен оставалась неизменной все прохождение; D-конфигура
	ция 9-16.04. Всего вспышек 126 ($2_2+I_{14}+s_{110}$; $X_2+M_{13}+C_{15}$).
IIIIM	Ca 4100/3,5 пятна 973/432/39 вкі D
09.04	Ca 2200/3,5 пятна II88/540/II EKI D
10.04	Са 3400/3,5 пятна 1283/411/19 ЕКС D
HR 17590	MI707-46 N 14 20,7 anp. 1981 MW 22216 AR 3049 СД177
14.04,233	0; 24.04,1344; LI50 26.04. 1057; 27.04.081
TILIM 24.04 26.04	класса D; с 2I.04 — новый импульс развития, быстрый рост площади и усложнение конфигурации пятен до 24.04; максимум развития вблизи W —лимба, D—конфигурация 2I-26.04. Всего вспышек 92 (2_3 + 1_7 + S $_{82}$; X_5 + M_8 + C_{14}). Са $_2$ - пятна 297/8I/36 DAI BY Ca 2I00/3,5 пятна I335/I256/25 DKC D Ca $_2$ - пятна I485/I053/9 DKC D
HR 17620	MI708-IO N I6 5,6 мая I98I MW 22252 AR 3080 СД20I
04.05,083	35; 05.05.1355, 312 2254
Новая	Образовалась на невидимой полусфере; основное развитие за счет появления многочисленных пор и мелких пятен во круг устойчивого пятна ведущей N -полярности; после 07.05 постепенный распад; за W -лимо ушла в виде одиноного пятна. D - конфигурация 2,5-6.05. Всего вспышек 6: $(2_1+1_2+3_{58}; X_1+M_2+C_{22})$.
IIIIM	Са -/- пятна 445/352/28 DKI D
04.05	Ca 3I00/3,5 пятна 500/280/28 EKI D

I9-I

	146 -
HR 17624	MI708-07 N 06 5,I мая 1981 MW 22251 AR 3079 СД196
09.05.023	9; 10.05.0715 L317
Новая	Образовалась на невидимой полусфере; со 02.05 быстрое развитие за счет образования большого числа пор и мелких пятен; максимум развития 04-07.05. Все большие вспышки 09-I0.05. Всего вспышек 62 $(2_{\rm I}+I_2+s_{59};\ M_2+C_{12})$.
ПЦМ 09.05	Ca -/- пятна 403/II7/50 DAI В Ca 2500/3,5 пятна 321/92/29 FAI ВУ
HR 17638	MI708-30 N 07 II,6 Mag 1981 MW 22266 AR 3099 CJ212
08.05.220	
2 оборот	Возвращение HR 17576, 581, наибольший компонент комплекса из трех групп пятен; из-за Е-лимба вышла в стадии развития; после максимума развития II.05 - постепенный развал группы. В -конфигурация 07-I2.05. Всего вспышек IOO $(2_1+I_7+S_{92}; M_7+C_{22})$.
ПЦМ 08.05 09.05	Ca -/- пятна 796/265/59 EKC D Ca 4200/3,5 пятна 873/304/15 DKC D Ca 6200/4,0 пятна 932/321/22 EKC D
HR 17644	MI708-42 N I3 I7,5 мая I98I мw 22278 AR 3I06 СД22I 8; I3.05.0334; LI53 I4.05.0805; I6.05.0753
2 оборот	Возвращение нк 17590; долготный комплекс АО из двух групп пятен; из-за Е-лимба вышел в полном развитии; постепенный распад после 17.05; за W-лимб искомая группа пятен ушла одиночным пятном; D-конфигурация II-I8.05. Всего вспышек I32 (33+21+15+ S 123; X2+M2+C24).
IIIM I3.05	Ca 9300/4,0 пятна 564/190/4I EHI D Ca 5600/3,5 пятна II76/487/22 FKC D

	M-1710-41 S 25 14,6 июля 1981 мW 22384 AR 3204 СДЗО6
19.07.052	8, 20,07; L IOO
3 оборот	Возвращение HR I7692,693; из-за Е-лимба вышла в стадии развития, максимум развития I4-I6.07; после I7.07 постепенное уменьшение площади и числа пятен; за W -лимб ушла в виде одиночного пятна. D -конфигурация II-I8.07. Всего вспышек 78 (2_1 + 1_6 + 3_7 I; X_1 + M_3 + C_1 7).
ЩМ	Ca I750/4,0 пятна 638/595/3I DKC D
19.07	Ca 1000/3,0 пятна 462/358/I0 DKO AP
HR 17777	MI7II-4I S 09 09,9 авг. 1981 MW 22447 AR 3257 СДЗ54
07.08.190	I; 08.08.2025 LII8
Новая	Образовалась на невидимой полусфере; на видимий диск вышла в стадии развития с максимумом 07-09.08, затем распад и упрощение; D -конфигурация 05-II.08 в лидирующем пятне. Всего вспышек I79 (2_1 + 1_2 3+ з 155 ; X_1 + M_2 2+ C_5 8)
	mom intrinct boots bottomest 115 (21,123, 5155, 11,122,158)
ЩМ	Са 4500/3,5 пятна I332/589/7I FKI D
Ш <u>і</u> м 07.08	
	Ca 4500/3,5 пятна I332/589/7I FKI D
07.08	Ca 4500/3,5 пятна I332/589/7I FKI D Ca 4500/3,5 пятна I565/697/78 FKI D
07.08 08.08	Ca 4500/3,5 пятна I332/589/7I FKI D Ca 4500/3,5 пятна I565/697/78 FKI D Ca 3800/3,5 пятна I510/667/94 FKI D MI713-3I S 09 26,9 сен. I98I MW 22620 AR 3359 СД446
07.08 08.08 HR 17863 22.09.083	Ca 4500/3,5 пятна I332/589/7I FKI D Ca 4500/3,5 пятна I565/697/78 FKI D Ca 3800/3,5 пятна I510/667/94 FKI D MI713-3I S 09 26,9 сен. I98I MW 22620 AR 3359 СД446
07.08 08.08 HR 17863	Са 4500/3,5 пятна I332/589/7I FKI D Са 4500/3,5 пятна I565/697/78 FKI D Са 3800/3,5 пятна I510/667/94 FKI D МІ7ІЗ-ЗІ S 09 26,9 сен. I981 MW 22620 AR 3359 СД446 4 L 204 Образовалась на невидимой полусфере; одиночное устойчивое пятно ведущей S-полярности с малым числом появляю-

HR 17906	MI714-04 S IS 14,3 окт. 1981 MW 22675 AR 3390 СД484
07.10.22	59; 12.10.0615 L332
Новая	Образовалась на невидимой полусфере; из-за Е-лимба появлясь в стадии бурного развития с максимумом 12-20.10, но самые большие вспышки произошли до 12.10. D-конфигураці 9-18.10. Всего вспышек 159 (22+117+3146; X2+M11+C47).
IIIM	Ca 6000/4.0 пятна 1795/644/50 ЕКС D
12.10	Ca -"- пятна 1802/632/43 ЕКІ D
pt 1	
	Ca -"- пятна 1802/632/43 EKI D MI715-04 S 19 10,5 нояб. 1981 MW 22759 AR 3450 СД535
HR 17989	Ca -"- пятна 1802/632/43 EKI D MI715-04 S 19 10,5 нояб. 1981 MW 22759 AR 3450 СД535
IR 17989 09.11.122	Са -"- пятна 1802/632/43 EKI D MI715-04 S19 I0,5 нояб. 1981 MW 22759 AR 3450 СД535 25; L 332 Возвращение HR 17906; все значимые пятна ведущей (S) полярности, поры ведомой (W) полярности отмечены

HR 17992	MI715-07 NI7 II,3 HOAG. I981 MW22760 AR3451 CJ536
I4.II.	2209 L324
3 оборот	Возвращение нк 17899; из-за Е-лимба вышла в виде одиночного пятна ведущей полярности, с 09.11. севернее пятна появилась новая группа пятен и к 10.11. площадь пятен увеличилась в 2,5 раза; максимум развития 14.11. D -конфигурация II-I5.II. Всего вспышек 68 (2_1 + 1_6 + 8_6); χ_1 + 1_8 + C_{35})
ЩМ	Ca 3000/4,0 пятна 562/III/II DKC D
14.II	Ca 4300/3,5 пятна 766/244/16 FKI D
HR18027	MI715-28 NI3 20,7 нояб. 1981 MW22800 AR3471 СД550
22.11.06	53 L202
кваоН	Образовалась на видимой полусфере 18.11. Быстрый рост площади пятен до значений 250 м.д.п. 20.11, которые сохранялись все прохождение. разовалась на видимой полусфере 18.11. Быстрый рост площади пятен до значений 250 м.д.п. 20.11, которые сохранялись все прохождение. разовалась на видимой полусфере 18.11. Быстрый рост площади проставания проставан
IIIDM	Boero Bonhmer 36 $(I_3+S_{33}; M_1+C_{12})$ Ca 700/3.5 natha 210/132/12 DKC D
Ш <u>М</u> 22.II.	
•	Ca 700/3,5 пятна 210/132/12 DKC D
22.11	Ca 700/3,5 пятна 210/132/12 DKC D Ca -/- пятна 171/143/12 DKC D MI716-05 N08 8,8 дек. 1981 MW22834 AR3496 СД577
22.11 HR18058 09.12.18	Са 700/3,5 пятна 210/132/12 DKC D Са -/- пятна 171/143/12 DKC D М1716-05 N08 8,8 дек. 1981 MW22834 AR3496 СД577 17 1323 Сбравовалась на невидимой полусфере; возможно южный компонент комплекса АО; после выхода на видимый диск ежедневное увеличение площади пятен в 1,5 раза до 18.12. D-конфигурация 6-9.12. Всего вспышек 54
22.11 HRI8058	Са 700/3,5 пятна 210/132/12 DKC D Са -/- пятна 171/143/12 DKC D М1716-05 N08 8,8 дек. 1981 мw22834 AR3496 СД577 17 L323 Сбравовалась на невидимой полусфере; возможно южный компонент комплекса АО; после выхода на видимый диск ежедневное увеличение площади пятен в 1,5 раза до

HR18093	MI716-42 SI4 28,6 дек. 1981 мw22872 AR3525 СД -
27.12. 0	155,0239, 0243 L67
3 оборот	•
	ры не отмечены в CD. Всего вспышек 8 (I_4+S_4 ; C_4)
ЩМ	Са 6600/2,5 пятна -/-/
27.12	Са 7000/2,5 пятна -/-/
HR18090	MI716-40 N2I 26,8 дек. 1981 MW2287I AR3522 СД600
02.01.	06I6 L84
Новая	Образовалась по-вадимому у Е-лимба; до 24.12 группа пор; новый импульс развития у W-лимба; самые большие вспышки $I-2.0I.82$ г. Всего вспышех $28~(I_5+s_{23};M_3+C_8)$ Са 2700/3,0 пятна 233/ $I26/I9$ DAO в
HR18176	MI717-05 813 01,4 фев. 1982 MW22952 AR3576 СДЗІ
30.0I.23	25; 01.02.1350; L323 03.02.0102; 06:02.2050;
	2350;07.02.1248; 08.02.1204;
Новая	Образовалась на невидимой полусфере. Бистрый рост площади после 27.01.; максимум развития $I-3.02$; $D-$ конфитурация 29.01-05.02 в ведомом пятне. Воего вспышек 151 $(3_1+2_3+1_{28}+3_{119}; X_4+M_{13}+C_{32});$ большие вспышки в основном произошли с 30.01-03.02 (73^h)
	HOW HOUSE O COSCI-COSCO (10)

пятна 1188/466/35

пятна 1301/428/63

пятна 234/234/І

BHTRE

пятна

949/532/14

940/794/7

_ .

FKC

PAO

EAO

D

D

В

В

30.0I

03.02

06.02

67.02

08.02

Ca 4800/3,5

Ca 7000/3,5

Ca 2000/3,0

-/-

-/-

Ca

Ca

MI719-20 NI6 03,2 Mapta 1982 MW23009 AR3628 CUSI
9 L292
Возвращение нк 18196; на предыдущем обороте образовалась северо-западнее корональной дыры; из-за Е-лимба вышла в стадии развития с максимумом 01.03; постепенное уменьшение площади к W-лимбу. D-конфигурация 4-7.03. Всего вспышек 60 (2 ₁ +1 ₈ +S ₅₁ ; X ₁ +M ₃ +C ₁₁)
Са 5000/3,0 пытна 391/116/17 DAO BY
Ca -/- пятна 778/342/9 FAC G
Ca 4700/3,5 пятна 415/380/9 ско р
MI720-09 NIO 28,9 MAPT 1982 MW23047 AR3659 CAIII
T3I5
Образовалась на невидимой полусфере на месте развалив- шейся НR 18250; из-за Е-лимба вышла в максимуме разви- тия; D -конфигурация 23.03-03.04 в ведомом пятне. Все- го вспышек 137 (2 2+ 1 22+ 1 31; 1 4 1 16+ 1 60, Са 3800/3,5 пятна 1181/606/22 екс р Са 3800/3,5 пятна 1146/637/37 екі р
MI722-40 808 8,5 мюнь 1982 MW23169 AR3763 СД189
I; 04,06.1313; 05.06.0614; L86 05.06.1526; 06.06.161
Образовалась на невидимой полуофере; из—за Е-лимба вышла в максимуме развития; локализовалась в 5° севернее гигантской корональной дири предидущего оборота, в данном обороте корональная дира в 8° на вго—западе; бистрое уменьшение площади пятен после 09.06; D-кон—фигурация все прохождение. Всего вспышек 203 ($2_{9}+1_{41}+3_{159}$; $X_{6}+M_{53}+C_{39}$) Са $6000/4$,0 пятна $1067/598/65$ EKI Са $4900/3$,5 пятна $1464/620/21$ EKC Ca $5200/4$,0 пятна $1266/572/30$ EKC Ca $5500/3$,5 пятна $1349/679/46$ FKC

HR[8474	MI724-07 NII 15,0 MOJIS 1982 MW23215 AR3804 CJJ229,228
08.07.065	50; 09.07.0720; 0848; 1322 12.07.0900; 17.07.1028;
22.07.164	18; 1733.
2 оборот	Возвращение НК 18422, одной из самых больших АО 19, 20 и 21 циклов солнечной активности; несмотря на очень высокую вспышечную активность (X ₅ +M ₃₁ +C ₃₇) протонных событий не наблюдалось; на данном обороте площадь пятен не уменьшалась; из-за Е-лимба группа пятен вышла в максимуме развития; с 13.07 отмечены быстрые собственные движения лидирующей части, в западном направлении, что привело к сильной вытянутости АО по долготе (до 28°); р-конфигурация 8-17.07. Большие вспышки в основном осуществились 9-12.07, 17-19.07; всего вспышек 234 (33+27+154+8170; X5+M6+C32)
	0- / 0000 /MEE /TOO TOWN D
IILIM	Ca -/- пятна 2028/755/I30 FKC D
ПЦ М 09.07	Ca 3300/3,5 пятна 1931/894/8 вкс D

BR 18511	MI725-03	NIO	10,6 a	er.1982	MW23252	AR 3837	СД26І
14.08.05	06			L340			
3 оборот	падающа W-ли мбу лидир у и	nges m Taggir Taggir	ически о	ген; мак осталион сытна;	симум раз разнесе: D-конфиг;	30 китиве , оп эмнн	долготе
ШІМ	Ca 1500	0/4,5	пятна	1271/3	35/88 1	eki d	
08.08	Ca 1300	0/4,0	пятна	1759/4	2I/63 I	FKC D	
I4.08	Ca 1600	0/4.0	пятна	616/3	63/43	eso y	

AR3886 M	I726-09	NI3 7	,0 сен.	1000	MW23314	BRI 8551	СД303
04.09.002	5; 0424;	0618;	r330				
4 оборот	шой АО по площ ективно	июня—ии еди эми сти. D-	3837; с оля 1982 осии в н -конфигур ^М 6 ^{+С} 15)	r. Ben	ышка 04. шка 21 ц	09 — самал икла в со	ившакоо и Конгенка
ЩМ	Ca 2900	/3,5	пятна	374/1	98/29	EHI BY	
04.09	Ca 3200	/3,5	пятна	294/I	18/8	DKI D	
AR3994 M	1728-38	sII]	9,8 нояб	.1982	MW23438	BRI8656	СДЗ94
2211, 120	8. I74I:	26.11.0	2IO L73				
Новая	р-конфи р-конфи	мпульс гурация	ю-видимою развития 19-26.1 [1+M _{II} +C ₃	o I9. I. Boe	II c mar	симумом 2	Jumoa; 3.II.
Новая	Обравов новый и D-конфи (2 ₂ +I ₁₈	-/- rypanus mnymbc	развития 19-26.1 2 ⁰ -11 ^{М+1} 18-11	c 19. I. Bos 0) 708/2	II c mar ero benemi	CHMYMOM 2 ek 109 EKI	Jiumda; 3.II.
	Обравов новый и р-конфи (2 ₂ +1 ₁₈ Са Са	мпульс гурапи: -/- -/-	развития 19-26.1. 1 ^{+М} 11 ^{+С} 3 пятна пятна	c 19. I. Boe 0) 708/2 2168/	II c mar Pro Bollelli 237/47 1300/47	CHMYMOM 2 ek 109 EKI	3.11.
шим	Обравов новый и р-конфи (2 ₂ +1 ₁₈ Са Са	-/- rypanus mnymbc	развития 19-26.1 2 ⁰ -11 ^{М+1} 18-11	c 19. I. Boe 0) 708/2 2168/	II c mar Pro Bollelli 237/47 1300/47	CHMYMOM 2 ek 109 EKI	23.II. D
Ш <u>і</u> м 23.ІІ	Обравов новый и D-конфи (2 ₂ +1 ₁₈ Са Са Са	MILYJEG TYPALLUS +589;) -/- -/- -/-	развития 19-26.1. 1 ^{+М} 11 ^{+С} 3 пятна пятна	c 19. I. Boe 0) 708/2 2168/ 612/3	II c mar pro benemi 37/47 /1300/47 660/2	CHMYMOM 2 OR IO9 EKI FKI DKI	D D D
IIIIM 23.II 26.II	Обравов новый и D-конфи (2 ₂ +1 ₁₈ Са Са Са	MILYJEG TYPALLUS +589;) -/- -/- -/-	развития 1 19-26.1 1 + М _{II} + С _З пятна пятна пятна	c 19. I. Boe 0) 708/2 2168/ 612/3	II c mar pro benemi 37/47 /1300/47 660/2	CHMYMOM 2 er 109 EKI FKI DKI	D D D
ШІМ 23.II 26.II AR4007 М	Обравов новый и D-конфи (2 ₂ +1 ₁₈ Са Са Са Са	миульо гурация +589;) -///- SI5 (алась г	развития 1 19-26.1 1 + M _{II} + C ₃ пятна пятна пятна	C 19. I. Boe 0) 708/2 2168/ 612/3 1982	II с мак вго веньш 237/47 /1300/47 260/2 мw23453 мw23453	EKI FKI DKI BRI8670	D D СД409 СД409
IIIIM 23.II 26.II AR4007 M 07.12.234	Обравов новый и D-конфи (2 ₂ +I ₁₈ Са Са Са Са Са П729-09 I Обравов личение витии; X _I +M _I +C	миульо гурация +589;) -///- SI5 (алась г	развития 1 19-26.13 1 19-26.13 1 19-26.13 1 19-26.13 1 19-26.13 1 19-26.13 1 19-26.13 1 19-26.13 1 19-26.13 1 19-26.13 1 19-26.13 1 19-26.13 1 19-26.13 1 19-26.13	C 19. I. Boe 0) 708/2 2168/ 612/3 1982 MY BOJ 2, 3a 07.12.	II с мак вго веньш 237/47 /1300/47 260/2 мw23453 мw23453	EKI FKI DKI BRI8670	D D СД409 ССФ уве-

AR 4026 M	1729-31	212	16,9 дек. :	2000 2010	BI BRI86	93 СД424
13.12.031	B; I5.I2	.1620	L 77			
2 оборот	развит D-конф	игураци	шимба; пос	мплекс АО с гепенный рас Всего вспь	спад к W-	лимбу;
	X ₄ +M ₁₂					
ППМ	Ca 340		пятна	343/339/30		ם
13.12	Ca 300		пятна	494/190/13		D
15.12	Ca 320	0/3,0	пятна	408/238/24	i pki	D
AR4025 M	1729–31	S08]	16,2 дек,	[982 MW2347	75 BR186	90 СД423
15.12.015	6; I620;	17.12.	[820 L 89			
2 оборот				иплекс АО с		
2 odopor IIIM 15.12 17.12	E-лимо II-I2, X ₃ +M ₂ + Ca 23 Ca 30	а вышла 14—21.]	вполне сфо	ормировавшей опышек 23 (3 435/256/2 538/367/2	dcя; D-ко B _I +2 ₂ +I ₃ + 28 DKI 20 DKO	нфигурация
ШМ 15.12	E-лимо II-I2, X ₃ +M ₂ + Ca 23 Ca 30	ба вншла 14-21.] -C ₁₂) 300/3,5	вполне сф [2.Всего в пятна пятна	ормировавшей опышек 23 (3 435/256/2 538/367/2 583/345/2	dcя; D-ко B ₁ +2 ₂ +1 ₃ + 28 DKI 20 DKO 20 DKI	р Б <mark>171;</mark> Барация
IIIM 15.12 17.12 19.12	E-лимо II-I2, X ₃ +M ₂ + Ca 23 Ca 30	ба вышла 14-21.1 -C ₁₂) 500/3,5 500/3,5 500/3,5	вполне сф [2.Всего ве пятна пятна пятна	ормировавшей опышек 23 (3 435/256/2 538/367/2 583/345/2 334/298/8	des; D-ko B1+22+13+ B8 DKI B0 DKO B0 DKI B DKO	нфигуреция S 171; D D D D
IIIM 15.12 17.12 19.12	E-mund II-I2, X ₃ +M ₂ + Ca 23 Ca 30 Ca 25 Ca 27	ба вышла 14-21.1 -C ₁₂) 500/3,5 500/3,5 500/3,5	вполне сф. [2.Всего вепятна пятна пятна пятна	ормировавшей опышек 23 (3 435/256/2 538/367/2 583/345/2 334/298/8	des; D-ko B1+22+13+ B8 DKI B0 DKO B0 DKI B DKO	нфигуреция S 171; D D D D
HUM 15.12 17.12 19.12	E-жимо II-I2, X ₃ +M ₂ + Ca 23 Ca 30 Ca 25 Ca 27	ба вышла 14-21.] 600/3,5 600/3,5 600/3,5 600/3,5 814 жинение Ан	вполне сф. [2.Всего вепятна пятна пятна пятна пятна пятна пятна пятна 127,9 дек. 1293	ормировавшей опышек 23 (3 435/256/2 538/367/2 583/345/2 334/298/8	16я; D-ко В ₁ +2 ₂ +І ₃ + ВВ	нфигурация S 171; D D D OI СД435
IIIM 15.12 17.12 19.12 AR4033 M 25.12.061	E-лимо 11-12, X ₃ +M ₂ + Ca 23 Ca 30 Ca 25 Ca 27 1730-07 0 Возвра рующим D-конф X ₂ +M ₅ +	ба вышла 14-21.] 600/3,5 600/3,5 600/3,5 600/3,5 814 жинение Ан	вполне сфи (2.Всего во пятна пятна пятна пятна 127,9 дек. 1 1293 14007; раз пым пятнами н 27-31.12	ормировавшей опышек 23 (3 435/256/2 538/367/2 583/345/2 334/298/8	16я; D-ко В ₁ +2 ₂ +І ₃ + ВВ	нфигурация S 171; D D D OI СД435 Шими лици— 23-27.12.

	MI73I-		2,7 фев.				753 C	• •
03.02.0	540		L169					
Новая	poe Butu	развитие и; D-кон	на видимо: до 02.02; фигурация X _I +M ₂ +C ₂₄	за W- 3I.0I-0	-лимо ущ	ла в по	лном	pas-
IIIM	Ca	-/-	пятна	946/	762/22	DKI	D	
03.02	Ca	-/-	пятна	972/	177/17	DKC	D	
			• •					
AR4104	MI732-	27 SI9	6.0 Mapr	1983	MW23585	BR 187	90.91	C/15
AR4104 10.03.0	MI732-	27 SI9	6,0 mapr	1983	MW23585	BRI87	90,91	СД5
	т Возв плек ба; воил пост	рещение са АО; о отмечен ась, но епенный		окружи ввития тно-лиј	омпонент дер обра: 02.03, 1 улась к. 1	вероят овалос огда п	ного ъ у Е глощел	ком- -лим- ь уд-
10.03.0	т Возв плек ба; воил пост	рещение са АО; о отмечен ась, но епенный	LII8 AR 4079; m choshoe ns manyanc pa 03.03 onst pachan nop k 68 (17+8	окруже ввития ввития жимй ко	омпонент дер образ 02.03, 1 улась к. 1 эксцих лиз	вероят ордалос орда п прежней прежней	ного ъ у Е глощел	ком- -лим- ь уд-

AR4171	MI735-09	s30	12,9 man	1983	MW2365I	BRI8871	СДІ23
12.05.0	219		1.3 0)O			
Новая	ла в ма хождени	исоймум Ги види	на невиди е развития ого диска (25+1 ₈ +5 ₄	r, noot 1 D-ro	епенное з нфигураци	атухание	при про-
ЩМ	Ca 430	0/3,5	DATHS	263/	220/21	DKI I)

	200
AR4173	MI735-0I s II 9,4 мая 1983 мw 23653 вк 18866 СДІ25
15.05.0	839 L 349
кваон	Образовалась на видимом диске 07.05 на E20; быстрое развитие с середины суток 10.05. и к 16 часам II.05 площадь увеличилась в 6 раз; в максимуме развития группа пятен ушла за W -лимб; D -конфигурация II-16.05. Всего вспышек 70 (19+561; XI+M7+C30)
ПЦМ	Са 1500/3,5 пятна 100/41/16 ДАО В
11.05	Ca -/- пятна 1228/573/37 EKI D
15.05	Ca 2500/4,0 пятна 1787/664/17 ЕКІ D
R 420I	MI736-03 s IO 5,4 июнь 1983 мw 23694 вк 18905 СДТ50
15.06 .	3 сут. за W-лимбом L349
шм 06.06 07.06	Возвращение AR 4173; из-за Е-лимба вышла в новой стадии развития и достигла максимума 06.06; почти без изменений ушла за W -лимб; D -конфигурация 31.05 II.06. Всего вспышек I60 ($I_{10}+s_{150}$; $X_{1}+M_{14}+C_{69}$) Са $-/-$ пятна $I067/4I6/5I$ FKC D Ca $-/-$ пятна $I856/I273/50$ FKI D Ca $6000/3$,5 пятна $I627/869/57$ FKC D
	MI744-20 N I6 27,0 янв. 1984 MW 23925 BR 19190 СД15 710; 1256 L119
2 odopo	
ПШМ	0 20 2 0
LTTRAF	Са 3500/3.0 пятна 273/179/12 САО В
26.0I	Ca 3500/3,0 пятна 273/179/12 CAO В Ca 3500/3,0 пятна 289/192/14 DSO В

4400 14	1745-01 sl3 06.6 фев. 1984 мw23937 вк19212 СД25
16.02. 3	сут. за W-лимбом L 340
кввон	Образовалась на невидимой полусфере; из-за Е-лимба вышла в виде одиночного пятна ведущей (s) полярности с двумя ядрами; с 06.02 появление многочисленных пор с востока и юга от пятна; с 08.02 резкий рост площади пятен; за W-лимб ушла в стадии развития; Всего вспышек $33 (2_{T}+\hat{1}_{T}+s_{3T}; M_{2}+C_{TT})$
ШІМ	Ca 4400/3,0 natha 90/65/I3 CAO B
11.02	Ca 4200/3.0 natha 668/530/I5 DKI BY
	WINAS OF WIA ON N X TOOA MW02054 TO TOOON SUDO
	1745-25 N14 23,7 фев. 1984 MW23954 BRI9227 СДЗ8
17.02.222	6 L 115
	постепенное уменьшение площади за время прохождения.
	D-конфигурация все прохождение. Всего вспышек 109 $(3_1+1_14+8_94; X_1+M_5+C_{42})$
IIIM	D-конфигурация все прохождение. Всего вспышек 109 ($3_1+1_{14}+s_{94}; X_1+M_5+C_{42}$) Са $9000/40$ пятна $1128/689/59$ FKI D
18.12	D-конфигурация все прохождение. Всего вспышек 109 (3 _I +I _{I4} +S ₉₄ ; X _I +M ₅ +C ₄₂) Са 9000/40 пятна II28/689/59 FKI D Са -/- пятна I397/I339/I9 DKI D
18.12 AR4433 N	D-конфигурация все прохождение. Всего вспышек 109 (3 _I +I _{I4} +S ₉₄ ; X _I +M ₅ +C ₄₂) Са 9000/40 пятна 1128/689/59 FKI D Са -/- пятна 1397/1339/19 DKI D
18.12	D-конфигурация все прохождение. Всего вспышек 109 (3 _I +I _{I4} +S ₉₄ ; X _I +M ₅ +C ₄₂) Са 9000/40 пятна 1128/689/59 FKI D Са -/- пятна 1397/1339/19 DKI D
18.12 AR4433 N	D-конфигурация все прохождение. Всего вспышек 109 (3 _I +I _{I4} +S ₉₄ ; X _I +M ₅ +C ₄₂) Са 9000/40 пятна 1128/689/59 FKI D Са -/- пятна 1397/1339/19 DKI D
18.12 AR4433 N 14.03.031	D-конфигурация все прохождение. Всего вспышек 109 (3 _I +I _{I4} +S ₉₄ ; X _I +M ₅ +C ₄₂) Са 9000/40 пятна 1128/689/59 FKI D Са -/- пятна 1397/1339/19 DKI D П746-18 S10 II,3 март 1984 мw23978 BR19255 СД54 5 L256 Образовалась на видимом диске 08.03 на Е40. Быстрое развитие с 12.03., причем за 12 часов площадь пятен удвоилась и за следующие 12 часов выросла еще в 3 раз максимум развития 14-15.02. Всего вспышек 34 (2 _I +I ₄ +S
I8.12 AR4433 M I4.03.03I Новая	D-конфигурация все прохождение. Всего вспышек 109 (3 _I +I _{I4} +S ₉₄ ; X _I +M ₅ +C ₄₂) Са 9000/40 пятна 1128/689/59 FKI D Са -/- пятна 1397/1339/19 DKI D П746-18 S10 II,3 март 1984 MW23978 BR19255 СД54 5 L256 Образовалась на видимом диске 08.03 на Е40. Быстрое развитие с 12.03., причем за 12 часов площадь пятен удвоилась и за следующие 12 часов выросла еще в 3 раз максимум развития 14-15.02. Всего вспышек 34 (2 _I +I ₄ +S M ₂ +C _{I4})

роств в течении первых 2 дней. Все вспышки баллов I и 2 осуществились за 59 часов 20-23.01.; к w-лимбу практически развалилась; D-конфигурация 2I-22.01. Всего вспышек 63 (2 ₁ +I _{II} +S ₅ ; X ₁ +M ₈ +C _{I8}) ПДМ Са 0900/3,0 пятна 60/-/14 DAO В В В В В В В В В В В В В В В В В В В	AR4617	MI757-IO	si2	[9,І янв.Т	985 MW24I93	BRI9538	C).2
роств в течении первых 2 дней. Все вспышки баллов I и 2 осуществились за 59 часов 20-23.01.; к w-лилору пректически развалилась; D-конфигурация 21-22.01. Всего вспышек 63 (2 _T +I _{II} +S ₅ ; X _I +M ₈ +C _{I8}) ПМ Са 0900/3,0 пятна 60/-/14 DAO В 21.01 Са 2000/3,5 пятна 640/290/20 ЕКІ D 22.01 Са -"- пятна 884/768/20 ЕКІ D 22.01 Са -"- пятна 884/768/20 ЕКІ D 22.01 Са -"- пятна 884/768/20 ЕКІ D 24.04 0850 1.235 НОВАЯ Образовалась по-видимому вслизи Е-лимба; быстрое развитие 21-22.04; максимум развития 23-25.04.; постепенное уменьшение площади после 26.04. D-конфигурация 23-30.04. Всего вспышек 83 (2 _T +I ₆ +S ₇₆ ;X _T +M ₂ +C ₂₃) ППМ Са 4300/3,7 пятна 848/646/32 ЕКІ D 24.04 Са 4000/3,7 пятна 916/695/14 ЕКІ D 20.07.2056; 09.07.0133; 1359 17.07. 3 сут.за W-лимбом 20.07.6 оут.за W-лимбом 20.07.6 оут.за W-лимбом вернее пятен ведущей; с 04.07. в непосредственной близосна и от развивается новая группа (ДД 49); с 07.07. обе гр пы слились в одку группу; D-конфигурация 06.08.07; Воего вспышек 62 (2 _T +I ₂ +S ₅₉ ; M ₂ +C ₁₀) ППМ Са 3800/3,4 пятна 652/408/29 DAO D 02.07 Са 3700/3,2 пятна 194/124/4 DAO В	21.01.2	308		L73			
Всего вспышек 63 (2 _T +I _{II} +S _{5I} ; X _T +M ₈ +C _{I8}) ПІМ Са 0900/3,0 пятна 60/ - /14 DAO В 21.01 Са 2000/3,5 пятна 640/290/20 ЕКІ D 22.01 Са -"- пятна 884/768/20 ЕКІ D 22.01 Са -"- пятна 884/768/20 ЕКІ D 24.04 0850 L235 НОВАЯ Образовалась по-видимому вблизи Е-лимба; бистрое развитие 21-22.04; Максимум развития 23-25.04.; постепенное уменьшение площади проле 26.04. D-конфигурация 23-30.04. Всего вспышек 83 (2 _T +I _G +S _G ;X _I +M ₂ +C ₂₃) ПІМ Са 4300/3,7 пятна 848/646/32 ЕКІ D 24.04 Са 4000/3,7 пятна 916/695/14 ЕКІ D АВ 4671 МІ763-22 S16 7,3 июль 1985 МW24246 ВКІ9619 СД48+49 02.07.2056; 09.07.0133; L359 17.07. З сут.за W-лимбом 20.07.6 сут.за W-лимбом ги з Возвращение АВ 4662; из-за Е лимба вышла небольшой групнобороти пой, в которой пятна ведомой полярности располагались севернее пятен ведущей; с 04.07. в непосредственной близости на юте развивается новая группа (СД 49); с 07.07. обе групн слились в одну группу; D-конфигурация 06.08.07; Всеговспышек 62 (2 _T +I ₂ +S ₅₉ ; M ₂ +C ₁₀) ПІМ Са 3800/3,4 пятна 652/408/29 DAO D 02.07 Са 3700/3,2 пятна 194/124/4 DAO В	Новая	роств	в течени	ии первых	2 дней. Все в	спышки ба.	ллов I и
22.01 Са 2000/3,5 пятна 640/290/20 ЕКІ D 22.01 Са -"- пятна 884/768/20 ЕКІ D 24.04 0850 L235 Новая Образовалась по-видимому вблизи Е-лимба; быстрое развитие 21-22.04; Максимум развития 23-25.04.; постепенное уменьшение площади проле 26.04. р-конфигурация 23-30.04. Всего вспешек 83 (2 ₁ +1 ₆ +5 ₇₆ ;X ₁ +M ₂ +C ₂₃) ПДМ Са 4300/3,7 пятна 848/646/32 ЕКІ D 24.04 Са 4000/3,7 пятна 916/695/14 ЕКІ D 24.04 Са 4000/3,7 пятна 916/695/14 ЕКІ D 22.07.2056; 09.07.0133; L359 17.07. З сут.за W-лимбом 20.07.6 оут.за W-лимбом 20.07.6 оут.за W-лимбом сороти пой, в которой пятна ведомой полярности располагались севернее пятен ведущей; с 04.07. в непосредственной близости встились в одну группу; р-конфигурация 06.08.07; Воего вспышек 62 (2 ₁ +1 ₂ +5 ₅₉ ; M ₂ +C ₁₀) ПЦМ Са 3800/3,4 пятна 652/408/29 DAO D 02.07 Са 3700/3,2 пятна 194/124/4 DAO В							2.01.
22.01 Са -"- пятна 884/768/20 ЕКІ В 14.4647 МІ76І-07 № 26,І апр. 1985 МУ242І9 ВКІ959І СД26 24.04 0850 L 235 НОВАЯ Образовалась по-видимому вблизи Е-лимба; бистрое развитие 2I-22.04; Максимум развития 23-25.04.; поотепенное уменьшение площади пооле 26.04. в-конфигурация 23-30.04. Всего вспышек 83 (2 ₁ +1 ₆ +5 ₇₆ ; X ₁ +M ₂ +C ₂₃) ПДМ Са 4300/3,7 пятна 848/646/32 ЕКІ В 24.04 Са 4000/3,7 пятна 916/695/14 ЕКІ В 22.07.2056; 09.07.0133; L359 17.07. З сут.за W-лимбом 20.07.6 сут.за W-лимбом 1 и 3 Возвращение АВ 4662; из-за Е лимба вышла небольшой группобороты пой, в которой пятна ведомой полярности располагались севернее пятен ведущей; с 04.07. в непосредственной близосна иге развивается новая группа (СД 49); с 07.07. обе групна слились в одну группу; в-конфигурация 06.08.07; Всего вспышек 62 (2 ₁ +1 ₂ +8 ₅₉ ; M ₂ +C ₁₀) ПЦМ Са 3800/3,4 пятна 652/408/29 ВАО В	ЩМ	Ca 09	0,8\00	пятна	60/ - /14	DAO	В
24.04 0850 L 235 НОВАЯ Образовалась по-видимому вблизи Е-лимба; бистрое развитие 2I-22.04; Максимум развития 23-25.04.; постепенное уменьшение площади после 26.04. D-конфигурация 23-30.04. Всего вспышек 83 (2 _I +I ₆ +S ₆ ;X _I +M ₂ +C ₂₃) ПДМ Са 4300/3,7 пятна 848/646/32 ЕКІ D 24.04 Са 4000/3,7 пятна 916/695/14 ЕКІ D АВ 4671 МП763-22 S16 7,3 июль 1985 мм24246 ВКІ9619 СД48+49 102.07.2056; 09.07.0133; L359 17.07. З сут.за м-лимбом 20.07.6 оут. за м-лимбом 20.07.6 оут. за м-лимбом ной, в которой пятна ведомой полярности располагались севернее пятен ведущей; с 04.07. в непосредственной близост на иге развивается новая группа (СД 49); с 07.07. обе гр. пы слились в одну группу; D-конфигурация 06.08.07; Всеговственное 62 (2 _I +I ₂ +S ₅₉ ; M ₂ +C _{IO}) ПДМ Са 3800/3,4 пятна 652/408/29 DAO D 02.07 Са 3700/3,2 пятна 194/124/4 DAO В	2I.OI	Ca 200	10/3,5	пятна	640/290/20	EKI	D.
Новая Образовалась по-видимому вблизи Е-лимба; бистрое развитие 21-22.04; Максимум развития 23-25.04.; постепенное уменьшение площади после 26.04. п-конфигурация 23-30.04. Всего вспышек 83 (2 ₁ +1 ₆ +5 ₇₆ ;X ₁ +M ₂ +C ₂₃) ПДМ Са 4300/3,7 пятна 848/646/32 ЕКІ В 24.04 Са 4000/3,7 пятна 916/695/14 ЕКІ В 24.04 Са 4000/3,7 пятна 916/695/14 ЕКІ В 02.07.2056; 09.07.0133; 1359 17.07. 3 сут. за W-лимбом 20.07.6 сут. за W-лимбом 1 и 3 Возвращение АВ 4662; из-за Е лимба вышла небольшой групобороти пой, в которой пятна ведомой полярности располагались севернее пятен ведущей; с 04.07. в непосредственной близости в из вернее пятен ведущей; с 04.07. в непосредственной близости пислались в одну группу; п-конфигурация 06.08.07; Всеговственные 62 (2 ₁ +1 ₂ +S ₅₉ ; M ₂ +C ₁₀) ПЦМ Са 3800/3,4 пятна 652/408/29 дао в	22.01	Ca	-"-	пятна	884/768/20	EKI	D
Новая Образовалась по-видимому вблизи Е-лимба; быстрое развитие 2I-22.04; Максимум развития 23-25.04.; постепенное уменьшение площади после 26.04. в-конфигурация 23-30.04. Всего вспышек 83 (2 _I +I ₆ +S ₇₆ ; X _I +M ₂ +C ₂₃) ПДМ Са 4300/3.7 пятна 848/646/32 ЕКІ в 24.04 Са 4000/3.7 пятна 916/695/14 ЕКІ в АВ 4671 МІ763-22 S16 7.3 июль 1985 мw24246 ВВГ9619 СД48+49 02.07.2056; 09.07.0133; 1359 17.07. 3 сут.за w-лимбом 20.07.6 сут.за w-лимбом 1 и 3 Возвращение АВ 4662; из-за Е лимба вышла небольшой групобороти пой, в которой пятна ведомой полярности располагались севернее пятен ведущей; с 04.07. в непосредственной близости на иге развивается новая группа (СД 49); с 07.07. обе группа слились в одну группу; в-конфигурация 06.08.07; Всеговственное 62 (2 _I +I ₂ +S ₅₉ ; М ₂ +С _{Т0}) ПЦМ Са 3800/3,4 пятна 652/408/29 вао в 02.07 Са 3700/3.2 пятна 194/124/4 вао в	AR4647	MI76I-07	NO4 :	26,I amp.	1985 MW24219	BRI959I	CJI26
витие 2I-22.04; Максимум развития 23-25.04.; постепенное уменьшение площади после 26.04. р-конфигурация 23-30.04. Всего вспышек 83 (2 _I +I ₆ +S ₇₆ ;X _I +M ₂ +C ₂₃) ПДМ Са 4300/3,7 пятна 848/646/32 ЕКІ р 24.04 Са 4000/3,7 пятна 916/695/14 ЕКІ р АВ 467І МІ763-22 S16 7,3 июль 1985 МЖ24246 ВВІ96І9 СД48+49 02.07.2056; 09.07.0133; 1359 17.07. 3 сут.за W-лимбом 20.07.6 сут.за W-лимбом 1 и 3 Возвращение АВ 4662; из-за Е лимба вышла небольшой групобороты пой, в которой пятна ведомой полярности располагались севернее пятен ведущей; с 04.07. в непосредственной близости и клились в одну группу; р-конфигурация 06.08.07; Всеговствишек 62 (2 _I +I ₂ +S ₅₉ ; M ₂ +С _{ТО}) ПДМ Са 3800/3,4 пятна 652/408/29 DAO в 02.07 Са 3700/3,2 пятна 194/124/4 DAO в	24.04	0850		L 235			
22.07.2056; 09.07.0133; L359 17.07. 3 сут.за W-лимбом 20.07.6 сут.за W-лимбом 20.07.6 сут.за W-лимбом 20.07.6 сут.за W-лимбом 1 и 3 Возвращение АВ 4662; из-за Е лимба вышла небольшой груп-обороты пой, в которой пятна ведомой полярности располагались севернее пятен ведущей; с 04.07. в непосредственной близости на юге развивается новая группа (СД 49); с 07.07. обе группы слились в одну группу; р-конфигурация 06.08.07; Всеговствиные 62 (2 ₁ +1 ₂ +5 ₅₉ ; M ₂ +C ₁₀)	24.04	Ca 4	300/3,7	пятна	848/646/3	S EKI	D
20.07.6 сут. за W - лимбом I и 3 Возвращение AR 4662; из-за Е лимба вышла небольшой груп- обороты пой, в которой пятна ведомой полярности располагались се- вернее пятен ведущей; с 04.07. в непосредственной близос: на ыте развивается новая группа (СД 49); с 07.07. обе группы слились в одну группу; р-конфигурация 06.08.07; Всего вспышек 62 (2 ₁ +1 ₂ +S ₅₉ ; M ₂ +C ₁₀) ПЦМ Са 3800/3,4 пятна 652/408/29 DAO в 02.07 Са 3700/3,2 пятна 194/124/4 DAO в		10000		~ ^	TOOF 1000464	DDTACT	0 0740 40
Пи 3 Возвращение АВ 4662; из-за Е лимба вышла небольшой груп- обороты пой, в которой пятна ведомой полярности располагались се- вернее пятен ведущей; с 04.07. в непосредственной близос: на юге развивается новая группа (СД 49); с 07.07. обе гр; пы слились в одну группу; р-конфигурация 06.08.07; Всего вспышек 62 (2 ₁ +1 ₂ +S ₅₉ ; M ₂ +C ₁₀) ПЦМ Са 3800/3,4 пятна 652/408/29 дао в							
					17.07.	3 сут.за	W-лимбом
09.07 Са 3800/3,7 пятна 752/440/28 ркс р	02.07.2 I и 3	Возвращи пой, в нернее и каките пи слили	7.0133; вние AR- которой пятен ве развивае ись в од 62 (2 ₁ +	L359 4662; из иятна ведс дущей; с с тся новая ну группу I ₂ +8 ₅₉ ; М	17.07. 20.07.6 за Е лимба выпомой полярност 04.07. в непоструппа (СД 45; 10-конфитура	3 сут. за м оут. за м ила неболь и распола оредственн о); с 07.0 имя 06.08	W-лимбом -лимбом шой груп- гались се- ой близост 7. обе гру
	02.07.2 I и 3 обороты	Возвращи пож, в нернее на юге на юге вспышек	7.0133; вние AR- которой пятен ве развивае ись в од 62 (2 ₁ +	L359 4662; из- пятна ведо дущей; с о тся новая ну группу 12+S59; М.	17.07. 20.07.6 за Е лимба выпомой полярност 04.07. в непоструппа (СД 45;	3 сут.за у оут.за у оут.за у оут.за у от.за у от.за у от.за у от.за от.	W-лимбом -лимбом шой груп- гались се- ой близос; 7. обе гру

AR4474	MI748-03	sI4 2	3,9 апр.	I984 1	W24030,29	BRI9320	СД97
24.04.23	356		L 334				
кввой	вышла дение;	в максим несмотр 24.04 н	уме разв я на сло:	ития; D жную ст	усфере; из -конфигура руктуру, о спышек 173	ция все п Од хишало	рохож- пышек
ПЦМ	Ca -/	' – пят	на 19	88/982/	33 FKI	D	
24.04	Ca . 50	000/5.0 п	ятна 21	66/II 4 8,	/17 FKI	D	
		o ott c	A A section	1984 M	W24057 BE	RT9349 CJ	113.114
AR4492 19.05.2	M1749-010		L 357	1304	21.05.201		
	148; 20.05 г Возвра ним по 28.05.	5.2224; ащение AR о диску;	1,357 4474; по ведомая гурация	остепен часть 19-26.		5; 22.05. при прох	1450
19.05.2	148; 20.05 г Возвра ним по 28.05.	5.2224; ащение AR р диску; р-конфи (4 ^{+S} 107;	1,357 4474; предомая гурация X3+M9+C4 ятна 35	остепен часть 19-26. 0) 6/170/1	21.05.201 HAM PACHEM (CMI4) NO 05. Beero	5; 22.05. при прож чезла уже вспышек І	1450
19.05.27 2 odopor	148; 20.05 возврания по 28.05. (23+1]	5.2224; ащение AR о диску; о D-конфи (4+S107; 00/3,5 п	1.357 4474; по ведомая гурация X3+M9+C4 ятна 35 ятна 15	остепен часть 19-26.	21.05.201 HMM pacuam (CMI14) MO 05. Beero 5 FHO 9	5; 22.05. при прох чезла уже вспышек I	1450
19.05.2 2 odopos	148; 20.05 в Возврания по 28.05. (2 ₃ +1 ₁) Са 800 Са 640	5.2224; жиение AR о диску; о D-конфи (4 ^{+S} 107; 00/3,5 п	1.357 4474; по ведомая гуреция X3+M9+C4 ятна 35 ятна 15 48 ятна 35	остепен часть 19-26. 0) 6/170/1 2/135/1 7/ 90/9	21.05.201 HHM PACHAM (CATI4) MO 05. Boero 5 FHO 9 FKI	5; 22.05. при прод чезла уже вспышек I	1450
19.05.2 2 odopos IIIIM 19.05	148; 20.05 возврания по 28.05. (2 ₃ +1 ₁) Са 800 Са 640	5.2224; пщение AR о диску; о D-конфи (4 ^{+S} 107; 00/3,5 п	L357 4474; по ведомая гурация Х3+М9+С4 ятна 35- 48 ятна 35- 67 ятна 30	остепен Часть 19-26. 0) 6/170/1 2/135/1 7/ 90/9 1/288/5 0/232/9	21.05.201 HHM PACHAM (CHI14) NO 05. Beero FKI FKI	5; 22.05. при прох чезла уже вспышек I D	1450

			-	100 -				
AR47II MI'	771-	s 04	5,8 фe	в. 1986	MW 2429	0 BR]	9705	СДЗ
04.02.0732	; 06.	.02.0618	L 6	2				
годорог	пол сим уга с О	вращение Ан усфере 13. ум развития сание; боли 3 по 07.02. (3 ₁ +2 ₃ +1 ₅ +8	01.; онс и 03-05. шинство D-конф	трое ра 02.; пос вспыше игураци	звитие ле 06.03 к осуще	ооп ОА Тоод З Мимето	ле ОІ. эточно зь за	02, мак быстро 83 часа
TILIM 04.02 06.02 07.02	Ca Ca Ca		внтвп внтвп внтвп внтвп	585/54 616/41	6/14 0/17	DKI DKI DKI	D D D	
AR47I3 MI	77I_	8 02	9,0 фев.	1986	MW2429	2 BRI	9709	ОД7
14.02.0902			r 16					
Новая	сфе 04. зул пул	азовелась і ре, неболы 02 произощь ътатом чего ьс развити ышек 75 (2	пая груп по услож явилас н с I2.0	па пяте ненке м ь вспыш 2; D-к	н класс агнитно ка 2В/М онфигур	а DAO И конфі 6 4/10	, в н игураг 18; но	оторой им ре-
ЩМ	Ca	-/-	ПЯТН		233/16	EKO	G	
04.02	Ca	•		a. 56/		-	-	
14.02	Ca	4000/3,5	LATE	a 934/	768/10	EKO	D	
AR4717 MI	772	s01 7,1	март І	86 MW2	4295 B	RI97I4	C)	пі
06:03.1637) .		L36				ş + r .	***
Новая	BMI	оввовалась гимый диск этепенное у вспышек 48	вишла в Гасание,	полном ва W-	развити	и; пос	ле 08	3.03.
TILIM								