Преобразование энергии.

Основные понятия:

Механическая энергия

Определение: Энергия это мера возможности совершить работу.

Для примера: Сжатая пружина в механических часах обладает энергией достаточной для работы часов в течении суток или более. Батарейки в детской игрушке позволяют ей работать в течении нескольких часов. Раскрутив детский волчок, можно сообщить ему энергию достаточную для вращения в течении некоторого времени.

Энергия и работа связанные между собой понятия, единицей для их измерения служит Джоуль [Дж]. Одно из определений работы из курса физики:

Определение: Работой силы F на прямолинейном пути s, в случае когда направление силы и направление движения совпадают, называется произведение силы на путь.

А=Fґ s

Опуская груз массой 1 кг на высоту s=1 м мы совершаем работу за счет силы тяжести. Сила тяжести G действующая на груз массой 1 кг рассчитывается по формуле:

G = mґ g

где g = 9.8 м/с2 - ускорение свободного падения;

m =1 кг-масса груза

G = 1ґ 9.8 = 9.8 Н

Следовательно, работа при опускании груза:

A=9.8ґ 1=9.8 Дж

Подняв груз массой 1 кг на высоту 1 м, мы совершили работу A=9.8 Дж. Если груз отпустить, то под действием силы тяжести опустившись на 1 м груз может совершить работу. Другими словами тело массой 1 кг поднятое на высоту 1 м обладает энергией (возможностью совершить работу) равной 9.8 Дж. В данном случае речь идет о потенциальной энергии в поле силы тяжести.

Движущиеся тело может, столкнувшись с другими телами, вызвать их движение (совершить работу). В этом случае речь идет о кинетической энергии. Сжимая (деформируя) пружину, мы сообщаем ей потенциальную энергию деформации (возможность совершить работу при распрямлении).

В повседневной жизни мы наблюдаем непрерывное перетекание энергии из одного вида в другие. Подбросив мяч, мы сообщаем ему кинетическую энергию, поднявшись на высоту h, он приобретает потенциальную энергию, в момент удара о землю мяч подобно пружине сжимается, приобретая потенциальную энергию деформации, и т.д. Все выше перечисленные виды энергии относятся к механической энергии.

Виды и источники энергии.

Тепловая энергия.

Вторым, после механической, видом энергии, которым человек пользуется на протяжении почти всей своей истории является тепловая энергии. Наглядное представление о тепловой энергии человек получает с пеленок: это горячая пища, тепло систем отопления в современной квартире (если его не отключили), или тепло печки в деревенском доме.

Что же представляет собой эта энергия с точки зрения физики?

Каждое физическое тело состоит из атомов или молекул, в жидкостях и газах они хаотично движутся, чем выше скорость движения, тем большей тепловой энергией обладает тело. В твердом теле подвижность молекул или атомов значительно ниже, чем в жидкости, а тем более в газе, молекулы твердого тела только колеблются относительно некоторого среднего положения, чем сильнее эти колебания тем большей тепловой энергией обладает тело. Нагревая тело (сообщая ему тепловую энергию), мы как бы раскачиваем его молекулы и атомы, при достаточно сильном “раскачивании” можно выбить молекулы со своего места и заставить хаотично двигаться. Этот процесс плавления наблюдал каждый, нагревая в руке кусочек льда. Продолжая нагрев, мы как бы разгоняем движущиеся молекулы, при достаточном разгоне молекула может выйти за переделы тела. Чем больше нагрев, тем больше молекул могут покинуть тело, в конце концов, передав телу достаточное количество тепловой энергии можно превратить его в газ. Такой процесс испарения протекает кипящем чайнике.

Электрическая энергия.

Мельчайшей электрически заряженной частицей является электрон, который в ходит в состав любого атома. Для нейтрального атома суммарный отрицательный заряд электронов равен положительному заряду ядра, а заряд всего атома равен нулю. Если удалить несколько электронов, то сумма зарядов электронов и ядра станет больше нуля. Если добавить лишних, то атом приобретет отрицательный заряд.

Из физики известно, что два противоположно заряженных тела притягиваются. Если на одном теле сосредоточить положительный заряд (удалить с атомов электроны), а на другом отрицательный (добавить электроны), то между ними возникнут силы притяжения, но на больших расстояниях эти силы очень малы. Соединив эти два тела проводником (например: металлической проволокой, в которой электроны очень подвижны) мы вызовем движение электронов от отрицательно заряженного тела к положительно заряженному телу. Движущиеся электроны могут совершить работу (например: накалить нить электролампы), следовательно, заряженные тела обладают энергией.

В источнике электрической энергии происходит разделение положительных и отрицательных зарядов, замыкая электрическую цепь, мы как бы позволяем разделенным зарядам соединится, но при этом заставляем их выполнить необходимую нам работу.

Химические источники энергии.

Самым первым источником энергии, который человек поставил себе на службу, были обыкновенные дрова для пещерного костра. При горении происходят химические реакции окисления. Самой распространенной и широко используемой, с древних времен и до наших дней, является реакция окисления углерода:

C + O2 Ю CO2 + теплота

Углерод в ходящий в состав любого органического топлива (уголь, дерево, нефть, газ), взаимодействуя с кислородом атмосферы, образует углекислый газ и выделяется тепловая энергия.

Химические реакции могут происходить, как с поглощением, так и с выделением энергии, сама энергия может быть как тепловой так и электрической. В автомобильном аккумуляторе при работе происходит выделение электрической энергии, при зарядке происходит поглощение электрической энергии.

Ядерный источник энергии.

Эйнштейн установил связь между энергией и массой в своем уравнении:

E = mґ c2

где с = 300 000 000 м/с - скорость света;

таким образом, тело человек массой 70 кг содержит в себе энергию

Е = 70ґ (300 000 000)2 = 6 300 000 000 000 000 000 Дж

такое количество энергии реакторная установка РБМК-1000 выработает только за две тысячи лет работы. Главная проблема научится превращать массу в полезную энергию. Первый шаг для решения этой проблемы человечество сделало, освоив военное и мирное использование энергии деления ядер. В самом первом приближении процессы, происходящие в ядерном реакторе, можно описать как непрерывное деление ядер. При этом масса целого ядра до деления больше массы получившихся осколков. Разница составляет примерно 0.1 % массы разделившегося ядра. Разумеется, до полного превращения массы в энергию еще очень далеко, но уже такое, не обнаруживаемое обычными весами, изменение массы топлива в реакторе позволяет получать гигантское количество энергии. Изменение массы топлива за год непрерывной работы в реакторе РБМК-1000 составляет приблизительно 0.3 г, но выделившаяся при этом энергия такая же, как при сжигании 3000000 (три миллиона) тон угля.

Мощность.

В практике, когда мы говорим о источнике энергии нас, как правило, интересует его мощность. Поднять тысячу кирпичей на пятый этаж строящегося дома, можно краном, а можно и с помощью двух рабочих с носилками. И в том, и в другом случае совершенная работа и затраченная энергия одинакова, отличаются только мощности источников энергии.

Определение: Мощность источника энергии (машины), это количество полученной энергии (совершенной работы) в единицу времени.

мощность= энергия (работа)/время

размерность: [Дж/сек = Вт ]

Закон сохранения энергии.

Как указывалось выше в окружающем нас мире происходит непрерывное преобразование энергии из одного вида, в другую. Подбросив мячик, мы вызвали цепочку преобразований механической энергии из одного вида в другой. Прыгающий мячик наглядно иллюстрирует закон сохранения энергии:

Энергия не может исчезать в никуда, или появляться из ниоткуда, она может только переходит из одного вида в другой.

Мяч, совершив несколько подскоков, в конце концов, останется неподвижным на поверхности. Поскольку первоначально переданная ему механическая энергия расходуется на:

а) преодоление сопротивления воздуха в котором движется мяч (переходит в тепловую энергию воздуха);

б) нагрев мяча и поверхности соударения (изменение формы всегда сопровождается нагревом, вспомним, как нагревается алюминиевая проволока при многократных перегибах).

Преобразование энергии.

Возможности по преобразованию и использованию энергии являются показателем технического развития человечества. Первым, используемым человеком, преобразователем энергии можно считать парус - использование энергии ветра для перемещения по воде, дальнейшие развитее, это использование ветра и воды в ветряных и водяных мельницах. Изобретение и внедрение паровой машины произвело настоящую революцию в технике. Паровые машины на фабриках и заводах резко увеличили производительность труда. Паровозы и теплоходы сделали перевозки по суше и морю более быстрыми и дешевыми. На начальном этапе паровая машина служила для превращения тепловой энергии в механическую энергию вращающегося колеса, от которого с помощью различного рода передач (валы, шкивы, ремни, цепи), энергия передавалась на машины и механизмы.

Широкое внедрение электрических машин, двигателей превращающих электрическую энергию в механическую и генераторов для производства электроэнергии из механической энергии, ознаменовало собой новый скачёк в развитии техники. Появилась возможность передавать энергию на большие расстояния в виде электроэнергии, родилась целая отрасль промышленности энергетика.

В настоящее время создано большое количество приборов предназначенных, как для преобразования электроэнергии в любой вид энергии необходимый для жизнедеятельности человека: электромоторы, электронагреватели, лампы освещения, так и использующие непосредственно электроэнергию: телевизоры, приемники и т.п.

Возможные схемы преобразования энергии

Непосредственное использование природных источников энергии:

Преобразование с использованием паровой машины:

Преобразование с использованием электроэнергии

Преобразование энергии в промышленной энергетике.

Как было сказано выше, производство электроэнергии является отдельной отраслью промышленности. В настоящее время наибольшую долю электроэнергии производят на трех видах электростанций:

  1. ГЭС (гидроэлектростанция);
  2. ТЭС (теплоэлектростанция);
  3. AЭС (атомная электростанция).

Рассмотрим преобразование энергии на этих видах электростанций

ГЭС.

ТЭС.

При использование тепловой энергии пара, в цепочки преобразования энергии появляется возможность использовать часть тепловой энергии для обогрева (показано пунктиром) или для нужд производства.

АЭС (с одноконтурным реактором).

Тепловой контур.

Основные понятия:

На предыдущем занятии мы рассмотрели виды энергии и возможности её преобразования из одного вида в другой, остановимся подробнее на тепловой энергии, поскольку она играет очень важную роль в процессах происходящих на АЭС.

Как было сказано ранее, тепловая энергия, это энергия хаотического движения молекул или атомов в жидкостях и газах и колебательного движения молекул или атомов в твердом теле. Чем выше скорость этого движения, тем большей тепловой энергией обладает тело.

Все мы сталкиваемся в нашей повседневной жизни с процессами передачи тепловой энергии от одного тела к другому, (горячий чай нагревает стакан, радиатор отопления в квартире нагревает воздух и т.д.). Исходя из определения тепловой энергии, можно дать определение теплообмену.

Определение: Процесс передачи энергии в результате обмена хаотическим движением молекул, атомов или микрочастиц называется теплообменом.

Из житейского опыта известно, что тепловая энергия или тепло передается от более горячего тела к более холодному, и кажется, вполне логичным принять за меру тепловой энергии температуру, однако это грубейшая ошибка. Температура тела является мерой способности к теплообмену с окружающими телами. Зная температуры двух тел, мы можем сказать только о направлении теплообмена. Тело с большей температурой будет отдавать тепло и остывать, а тело с меньшей температурой принимать тепло и нагреваться, однако количество передаваемой энергии определить, исходя только из температуры, невозможно. За примером далеко ходить не надо: попробуйте налить равное количество кипятка в алюминиевую кружку и керамическую. Алюминий практически мгновенно нагреется, почти не остудив воду, а керамика будет нагреваться гораздо меньше и значительно дольше, а изначальная температура кипятка и в том и другом случае 100° С. Отсюда следует вывод: для нагрева на одинаковую температуры различных веществ необходимо различное количество тепловой энергии, каждое вещество обладает своей теплоемкостью.

Определение: удельной теплоемкостью вещества называется количество энергии необходимое для нагрева одного килограмма данного вещества на один градус.

C=Q/(mґ D T)

Размерность: [Дж/(кгґ град)]

где:

Q - энергия;

С - теплоемкость;

m - масса;

D Tподогрев.

Способы теплообмена.

Как правило в промышленных энергоустановках процесс преобразования энергии источника в тепловую происходит в одном месте (котел для ТЭС, реактор для АЭС), а процесс преобразования тепловой энергии в механическую и далее в электрическую в другом, следовательно возникает проблема перемещения тепловой энергии в пространстве. Как можно передать тепловую энергию из одной точки пространства в другую?

Теплопроводность.

Нагревая один конец металлической проволоки можно заметить, что температура повышается по всей длине, причем, чем короче проволока, тем быстрее нагреется противоположная, не нагреваемая напрямую, часть. Нагревая проволоку с одной стороны, мы заставляем атомы и электроны в месте нагрева колебаться сильнее, колеблющиеся атомы и электроны вовлекают в колебание соседние атомы и электроны, происходит распространение тепловой энергии в твердом теле, в нашем случае в металлической проволоке. Такой способ передачи тепловой энергии называется теплопроводностью.

Определение: Теплопроводность представляет собой процесс передачи теплоты в сплошной среде посредством хаотического движения микро частиц.

Количество теплоты, передаваемое за счет теплопроводности зависит от физических свойств среды в которой происходит теплообмен. Каждое вещество обладает своим коэффициентом теплопроводности l (Металлический прут длинной около метра помещенный одним концом в огонь, невозможно будет удержать в голых руках, деревянная палка такой же формы сгорит больше чем на половину, прежде чем сколь нибудь значительно нагреется).

Чем больше разность температур D T между горячей и холодной точкой среды, тем большее количество тепла передается. Чем больше площадь поперечного сечения, тем большее количество тепла передается.

Наверное, каждый знает, как вскипятить воду с помощью костра в деревянной посуде. Нужно бросать в воду раскаленные в огне камни. Нагретые камни сразу смачиваются водой и отдают ей свою теплоту. Процесс передачи тепла от камней к окружающей их воде похож на теплопроводность, но распределение тепловой энергии по объему воды носит другой характер.

Конвективный теплообмен.

Рассмотрим, что происходит в объеме холодной воды, когда горячие камни нагревают ее часть вокруг себя. Из физики известно, что тела нагреваясь - расширяются, другими словам увеличивают свой объем, а поскольку масса остается постоянной, плотность снижается. Как гласит закон Архимеда тело с плотностью большей, чем плотность жидкости погружается, а с меньшей всплывает. Тоже самое можно сказать о нагретой жидкости, обладая меньшей плотностью, она начнет подниматься, перемешиваясь с холодными слоями в верхней части сосуда, которые, в свою очередь, начнут опускаться, через некоторое время температура по всему объему станет одинаковой.

Определение: Конвективный теплообмен - перенос теплоты при перемещении и перемешивании более нагретых частиц среды с менее нагретыми.

В примере, приведенном выше, движения было вызвано разностью плотностей горячих и холодных частей жидкости такая конвекция называется естественной или свободной. Если движение вызвано работой насоса или вентилятора, то конвекция называется вынужденной.

Конвективный теплообмен происходит в газах так же, как и в жидкостях.

Во многих современных АЭС отвод теплоты из реактора происходит путем принудительной прокачки воды, газа или жидкого металла через активную зону. Вещество, которое, нагреваясь, забирает теплоту от источника, называется теплоносителем.

Теплообмен излучением.

Опыты показывают, что теплообмен между телами возможен даже если они находятся в вакууме не соприкасаясь друг с другом. В этом случае виды теплообмена, описанные выше, не могут осуществляться. Как же происходит передача тепловой энергии в данном случае?

Нагретое тело испускает электромагнитные волны, которые, как известно, могут распространяться в безвоздушном пространстве менее нагретое тело поглощает эти волны и нагревается.

Определение: Теплообмен излучением - это передача тепловой энергии с помощью электромагнитных волн.

В современных АЭС при нормальной работе теплообмен излучением пренебрежимо мал по сравнению с конвективным.

Тепловой контур.

Рассмотрев способы возможные теплообмена, вернемся к вопросу о передаче тепловой энергии в условиях АЭС или ТЭС. Как известно, на работающих станциях процесс преобразования энергии источника в тепловую происходит непрерывно и в случае прекращения теплоотвода произойдет неизбежный перегрев установки. Следовательно, наряду с источником, необходим потребитель тепловой энергии, который будет забирать тепло и либо преобразовывать его в другие формы энергии либо передавать его в другие системы. Передачу тепла от источника к потребителю осуществляется с помощью теплоносителя. На основании выше сказанного можно изобразить простейший тепловой контур, содержащий источник энергии, потребитель энергии, и тракты теплоносителя.

Простейшая схема теплового контура.

Рассмотрим работу теплового контура для случая, когда теплоноситель не меняет своего фазового состояния (не испаряется).

Холодный теплоноситель поступает в устройство, являющиеся источником тепловой энергии для контура (реактор АЭС, котел ТЭС), в нем он нагревается, забирая тепловую энергию. Горячий теплоноситель подается в потребитель тепловой энергии, на выходе из которого, мы вновь имеем холодный теплоноситель.

Расход теплоносителя g [кг/сек], теплоемкость теплоносителя С (Дж/(кгґ град)), температура на входе в источник T1 [град] на выходе из источника T2 [град] и мощность источника Q [Вт] связанны соотношением:

Q = gґ Cґ (T2-T1)

В некоторых случаях температура теплоносителя на входе в источник и выходе из источника может быть одинакова. Например, в случае если в источнике тепловой энергии происходит кипение теплоносителя, как известно температура кипящей воды остается постоянной. Теплота отводится за счет изменения фазового состояния теплоносителя.

Определение: Удельной теплотой парообразования вещества называется количество теплоты необходимое для того, чтобы перевести один килограмм данного вещества из жидкого состояния в газообразное.

Размерность: [Дж/кг]

Если R - удельная теплота парообразования теплоносителя, то мощность источника Q [Вт] расход теплоносителя g [кг/сек] и паросодержание p на выходе из источника тепловой энергии связанны соотношением:

Q = Rґ gґ p